【題目】[選修4-4:參數方程與極坐標系]
以直角坐標系的原點O為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位,已知直線l的參數方程為 ,(t為參數,0<θ<π),曲線C的極坐標方程為ρsin2θ﹣2cosθ=0.
(1)求曲線C的直角坐標方程;
(2)設直線l與曲線C相交于A,B兩點,當θ變化時,求|AB|的最小值.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex﹣x2﹣ax.
(Ⅰ)若函數f(x)的圖象在x=0處的切線方程為y=2x+b,求a,b的值;
(Ⅱ)若函數f(x)在R上是增函數,求實數a的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xe2x﹣lnx﹣ax.
(1)當a=0時,求函數f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn , a1=1,an+1=λSn+1(n∈N*,λ≠﹣1),且a1、2a2、a3+3成等差數列.
(1)求證:數列{an}為等比數列;
(2)設bn=2an﹣1,求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數 ,若曲線 上存在(x0 , y0),使得f(f(y0))=y0成立,則實數m的取值范圍為( )
A.[0,e2﹣e+1]
B.[0,e2+e﹣1]
C.[0,e2+e+1]
D.[0,e2﹣e﹣1]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
已知極點為直角坐標系的原點,極軸為x軸正半軸且單位長度相同的極坐標系中曲線C1:ρ=1, (t為參數).
(1)求曲線C1上的點到曲線C2距離的最小值;
(2)若把C1上各點的橫坐標都擴大為原來的2倍,縱坐標擴大為原來的 倍,得到曲線 .設P(﹣1,1),曲線C2與 交于A,B兩點,求|PA|+|PB|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三角形ABC中,角A,B,C所對邊分別為a,b,c,滿足(2b﹣c)cosA=acosC.
(1)求角A;
(2)若 ,b+c=5,求三角形ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司的研發(fā)團隊,可以進行A、B、C三種新產品的研發(fā),研發(fā)成功的概率分別為P(A)= ,P(B)= ,P(C)= ,三個產品的研發(fā)相互獨立.
(1)求該公司恰有兩個產品研發(fā)成功的概率;
(2)已知A、B、C三種產品研發(fā)成功后帶來的產品收益(單位:萬元)分別為1000、2000、1100,為了收益最大化,公司從中選擇兩個產品研發(fā),請你從數學期望的角度來考慮應該研發(fā)哪兩個產品?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com