圓C通過(guò)不同的三點(diǎn)P(k,0)、Q(2,0)、R(0,1),已知圓C在P點(diǎn)切線斜率為1,試求圓C的方程.

思路解析:根據(jù)條件可設(shè)圓的一般方程,把三點(diǎn)坐標(biāo)代入,再利用圓的性質(zhì)即可.

解:設(shè)圓C的方程為x2+y2+Dx+Ey+F=0.

將P、Q、R三點(diǎn)的坐標(biāo)代入,得

∴圓的方程為x2+y2-(k+2)x-(2k+1)y+2k=0,圓心為().

又∵kCP=-1,∴k=-3.

∴圓的方程為x2+y2+x+5y-6=0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C通過(guò)不同的三點(diǎn)P(m,0)、Q(2,0)、R(0,1),PQ為直徑且PC的斜率為-1.
(1)試求⊙C的方程;
(2)過(guò)原點(diǎn)O作兩條互相垂直的直線l1,l2,l1交⊙C于E,F(xiàn)兩點(diǎn),l2交⊙C于G,H兩點(diǎn),求四邊形EGFH面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓C通過(guò)不同的三點(diǎn)P(k,0)、Q(2,0)、R(0,1),已知圓C在點(diǎn)P處的切線斜率為1,試求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓C通過(guò)不同的三點(diǎn)P(λ,0),Q(3,0),R(0,1),又知圓C在點(diǎn)P處的切線的斜率為1,則λ為
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

圓C通過(guò)不同的三點(diǎn)P(k,0)、Q(2,0)、R(0,1),已知圓C在點(diǎn)P處的切線斜率為1,試求圓C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案