已知向量
a
=(
1
sinx
,-
1
sinx
),
b
=(2,cos2x)
,其中x∈(0,
π
2
].
(1)試判斷
a
b
能否平行?并說明理由;
(2)求f(x)=
a
b
的最小值.
(1)
a
b
不能平行,理由如下
a
b
,則
1
sinx
×cos2x+
2
sinx
=0

x∈(0,
π
2
],
∴sinx≠0,
∴cos2x=-2,
這與|cos2x|≤1矛盾,
a
b
 不能平行
(2)由題意f(x)=
a
b
=
2
sinx
-
1
sinx
×cos2x
=
2-cos2x
sinx
=
1
sinx
+2sinx

x∈(0,
π
2
]
∴sinx∈(0,1].
∴f(x)=
1
sinx
+2sinx
≥2
1
sinx
×2sinx
=2
2

當(dāng)且僅當(dāng)
1
sinx
=2sinx
,即x=
π
4
時(shí)取等號
∴f(x)=
a
b
的最小值是2
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
2
sinx
-1
sinx
),
b
=(1,cos2x)
x∈(0,
π
2
]

(Ⅰ)若
a
b
是兩個(gè)共線向量,求x的值;
(Ⅱ)若f(x)=
a
b
,求函數(shù)f(x)的最小值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
1
sinx
-1
sinx
)
b
=(2,cos2x)

(1)若x∈(0,
π
2
]
,試判斷
a
b
能否平行?
(2)若x∈(0,
π
3
]
,求函數(shù)f(x)=
a
b
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
1
sinx
,-
1
sinx
),
b
=(2,cos2x)
,其中x∈(0,
π
2
].
(1)試判斷
a
b
能否平行?并說明理由;
(2)求f(x)=
a
b
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量
a
=(
1
sinx
,
-1
sinx
)
,
b
=(2,cos2x)

(1)若x∈(0,
π
2
]
,試判斷
a
b
能否平行?
(2)若x∈(0,
π
3
]
,求函數(shù)f(x)=
a
b
的最小值.

查看答案和解析>>

同步練習(xí)冊答案