【題目】如圖,在四棱錐中,底面,底面是直角梯形,,,的中點.

1)求證:平面平面;

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

【答案】)見解析()直線PA與平面EAC所成角的正弦值為

【解析】

(1)∵PC平面ABCD,AC平面ABCDACPC.∵AB2,ADCD1ACBC.∴AC2BC2AB2.∴ACBC.

BCPCC,AC平面PBC.

AC平面EAC平面EAC平面PBC.

(2)如圖,

以點C為原點,,分別為x軸、y軸、z軸正方向,建立空間直角坐標系,則C(0,0,0),A(1,1,0)B(1,-1,0),設(shè)P(0,0,a)(a>0)

E,(1,1,0),(0,0a),.m(1,-1,0),則m·m·0,m為面PAC的法向量.設(shè)n(x,yz)為面EAC的法向量,則n·n·0,即,取xa,y=-a,z=-2,則n(a,-a,-2),依題意,|cosm,n|,則a2.于是n(2,-2,-2),(1,1,-2).設(shè)直線PA與平面EAC所成角為θ,則sinθ|cos,n|,即直線PA與平面EAC所成角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,點P(2,0).

(I)求橢圓C的短軸長與離心率;

( II)(1,0)的直線與橢圓C相交于M、N兩點,設(shè)MN的中點為T,判斷|TP||TM|的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=1-a0a≠1)是定義在(-∞,+∞)上的奇函數(shù).

1)求a的值;

2)證明:函數(shù)fx)在定義域(-∞+∞)內(nèi)是增函數(shù);

3)當x∈(0,1]時,tfx≥2x-2恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,已知點A(1,1),B(2,3),C(3,2),點P(x,y)在△ABC三邊圍成的區(qū)域(含邊界)上.
(1)若 ,求| |;
(2)設(shè) =m +n (m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三一次月考之后,為了為解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機抽出若干名學(xué)生此次的數(shù)學(xué)成績,按成績分組,制成了下面頻率分布表:

組號

分組

頻數(shù)

頻率

第一組

5

0.05

第二組

35

0.35

第三組

30

0.30

第四組

20

0.20

第五組

10

0.10

合計

100

1.00

(1)試估計該校高三學(xué)生本次月考數(shù)學(xué)成績的平均分和中位數(shù);

(2)如果把表中的頻率近似地看作每個學(xué)生在這次考試中取得相應(yīng)成績的概率,那么從所有學(xué)生中采用逐個抽取的方法任意抽取3名學(xué)生的成績,并記成績落在中的學(xué)生數(shù)為,

求:在三次抽取過程中至少有兩次連續(xù)抽中成績在中的概率;

的分布列和數(shù)學(xué)期望.(注:本小題結(jié)果用分數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓的右焦點軸的垂線,與橢圓在第一象限內(nèi)交于點,過作直線的垂線,垂足為,

(1)求橢圓的方程;

(2)設(shè)為圓上任意一點,過點作橢圓的兩條切線,設(shè)分別交圓于點,證明:為圓的直徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級一次數(shù)學(xué)考試后,為了解學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,隨機抽取學(xué)生的數(shù)學(xué)成績,制成表所示的頻率分布.

組號

分組

頻數(shù)

頻率

第一組

第二組

第三組

第四

第五組

合計

(1)、、值;

(2)若從第三、四、五中用分層抽樣方法抽取學(xué)生,在這學(xué)生中隨機抽取學(xué)生與張老師面談,求第三組中至少有學(xué)生與張老師面談的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】6把椅子排成一排,3人隨機就座,任何兩人不相鄰的坐法種數(shù)為(
A.144
B.120
C.72
D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AB=11,AD=7,AA1=12.一質(zhì)點從頂點A射向點E(4,3,12),遇長方體的面反射(反射服從光的反射原理),將第i﹣1次到第i次反射點之間的線段記為li(i=2,3,4),l1=AE,將線段l1 , l2 , l3 , l4豎直放置在同一水平線上,則大致的圖形是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案