15.荊州市某重點學(xué)校為了了解高一年級學(xué)生周末雙休日在家活動情況,打算從高一年級1256名學(xué)生中抽取50名進行抽查,若采用下面的方法選。合扔煤唵坞S機抽樣從1256人中剔除6人,剩下1250人再按系統(tǒng)抽樣的方法進行,則每人入選的機會(  )
A.不全相等B.均不相等C.都相等D.無法確定

分析 在系統(tǒng)抽樣中,若所給的總體個數(shù)不能被樣本容量整除,則要先剔除幾個個體,然后再分組,在剔除過程中,每個個體被剔除的概率相等,每個個體被抽到包括兩個過程,這兩個過程是相互獨立的.

解答 解:∵在系統(tǒng)抽樣中,若所給的總體個數(shù)不能被樣本容量整除,則要先剔除幾個個體,然后再分組,
在剔除過程中,每個個體被剔除的概率相等,
∴每個個體被抽到包括兩個過程,一是不被剔除,二是選中,這兩個過程是相互獨立的,
∴每人入選的概率P=$\frac{1250}{1256}×\frac{50}{1250}$=$\frac{50}{1256}$=$\frac{25}{628}$,
故選C.

點評 在系統(tǒng)抽樣過程中,為將整個的編號分段(即分成幾個部分),要確定分段的間隔,當(dāng)在系統(tǒng)抽樣過程中比值不是整數(shù)時,通過從總體中刪除一些個體(用簡單隨機抽樣的方法).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)等比數(shù)列{an}的前n項和為Sn,若a1=3,a4=24,則S6=( 。
A.93B.189C.99D.195

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2$\sqrt{2}$sin(θ-$\frac{π}{4}$),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{3}t}\\{y=-1+\frac{\sqrt{2}}{4}t}\end{array}\right.$,直線l和圓C交于A,B兩點,P是圓C上不同于A,B的任意一點
(1)求圓C的直角坐標(biāo)方程;
(2)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=loga(x-1)+4(a>0且a≠1)恒過定點P,若點P也在冪函數(shù)g(x)的圖象上,則g(3)=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.點M(x,y,z)是空間直角坐標(biāo)系Oxyz中的一點,則與點M關(guān)于y軸對稱的點的坐標(biāo)是(-x,y,-z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=sin2x+2$\sqrt{3}$sinxcosx+3cos2x,x∈R.求:
(I)求函數(shù)f(x)的最小正周期;
(II)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6},\frac{π}{3}$]上的值域.
(Ⅲ)描述如何由y=sinx的圖象變換得到函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{x+2}{x}$
(1)寫出函數(shù)f(x)的定義域和值域;
(2)證明函數(shù)f(x)在(0,+∞)為單調(diào)遞減函數(shù);并求f(x)在x∈[2,8]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(Ⅰ)若函數(shù)f(x)=$\sqrt{{x}^{2}-kx-k}$定義域為R,求k的取值范圍;
(Ⅱ)解關(guān)于x的不等式(x-a)(x+a-1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.等差數(shù)列{an}的前n項和為Sn,已知a1=2,a2為整數(shù),且a3∈[3,5].
(1)求{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+2}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案