【題目】函數(shù)f(x)=-x3-2x2+4x,當(dāng)x∈[-3,3]時,f(x)≥a有恒成立,則實數(shù)a的取值范圍是( )
A.(-3,11)
B.[-33,+∞)
C.(-∞,-33]
D.[2,7]
【答案】C
【解析】令f(x)=-3x2-4x+4,令f(x)=0,可得x=-2或 .,f(-3)=-3,f(-2)=-8,f( )= ,f(3)=-33,要使f(x)≥a在x∈[-3,3]上恒成立,只需fmin(x)≥a,所以的取值范圍是(-∞,-33],故C符合題意.
所以答案是:C .
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識,掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校對高一年級學(xué)生的數(shù)學(xué)成績進(jìn)行統(tǒng)計,全年級同學(xué)的成績?nèi)拷橛?0分與100分之間,將他們的成績數(shù)據(jù)繪制如圖所示的頻率分布直方圖.現(xiàn)從全體學(xué)生中,采用分層抽樣的方法抽取80名同學(xué)的試卷進(jìn)行分析,則從成績在[80,100]內(nèi)的學(xué)生中抽取的人數(shù)為( )
A.56
B.32
C.24
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓M: + =1(a>0)的一個焦點為F(﹣1,0),左右頂點分別為A,B,經(jīng)過點F的直線l與橢圓M交于C,D兩點.
(Ⅰ)求橢圓方程;
(Ⅱ)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α∈(0, ),β∈(0, ),且滿足 cos2 + sin2 = + ,sin(2017π﹣α)= cos( π﹣β),則α+β= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省高考改革新方案,不分文理科,高考成績實行“3+3”的構(gòu)成模式,第一個“3”是語文、數(shù)學(xué)、外語,每門滿分150分,第二個“3”由考生在思想政治、歷史、地理、物理、化學(xué)、生物6個科目中自主選擇其中3個科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調(diào)查學(xué)生對物理、化學(xué)、生物的選考情況,將“某市某一屆學(xué)生在物理、化學(xué)、生物三個科目中至少選考一科的學(xué)生”記作學(xué)生群體S,從學(xué)生群體S中隨機抽取了50名學(xué)生進(jìn)行調(diào)查,他們選考物理,化學(xué),生物的科目數(shù)及人數(shù)統(tǒng)計如表:
選考物理、化學(xué)、生物的科目數(shù) | 1 | 2 | 3 |
人數(shù) | 5 | 25 | 20 |
(I)從所調(diào)查的50名學(xué)生中任選2名,求他們選考物理、化學(xué)、生物科目數(shù)量不相等的概率;
(II)從所調(diào)查的50名學(xué)生中任選2名,記X表示這2名學(xué)生選考物理、化學(xué)、生物的科目數(shù)量之差的絕對值,求隨機變量X的分布列和數(shù)學(xué)期望;
(III)將頻率視為概率,現(xiàn)從學(xué)生群體S中隨機抽取4名學(xué)生,記其中恰好選考物理、化學(xué)、生物中的兩科目的學(xué)生數(shù)記作Y,求事件“y≥2”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為得到函數(shù)y=sin2x﹣cos2x的圖象,可由函數(shù)y= sin2x的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 =(x,1), =(4,﹣2).
(Ⅰ)當(dāng) ∥ 時,求| + |;
(Ⅱ)若 與 所成角為鈍角,求x的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 : , 為 上一點且縱坐標(biāo)為 , , 是 上的兩個動點,且 .
(1)求過點 ,且與 恰有一個公共點的直線 的方程;
(2)求證: 過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓x2+y2+x-6y+m=0與直線x+2y-3=0相交于P、Q兩點,O為原點,且OP⊥OQ,求實數(shù)m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com