已知拋物線C的頂點為O(0,0),焦點為F(0,1).

(1)求拋物線C的方程;
(2)過點F作直線交拋物線C于A,B兩點,若直線AO,BO分別交直線l:y=x-2于M,N兩點,求|MN|的最小值.
(1) x2=4y   (2)

解:(1)由題意可設(shè)拋物線C的方程為x2=2py(p>0),則
=1,所以拋物線C的方程為x2=4y.
(2)設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=kx+1.
消去y,整理得x2-4kx-4=0,
所以x1+x2=4k,x1x2=-4.從而|x1-x2|=4.

解得點M的橫坐標xM===.
同理,點N的橫坐標xN=.
所以|MN|=|xM-xN|=
=8
=.
令4k-3=t,t≠0,則k=.
當t>0時,|MN|=2>2.
當t<0時,|MN|=2.
綜上所述,當t=-,即k=-時,|MN|的最小值是.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)拋物線的焦點為,點,線段的中點在拋物線上.設(shè)動直線與拋物線相切于點,且與拋物線的準線相交于點,以為直徑的圓記為圓
(1)求的值;
(2)試判斷圓軸的位置關(guān)系;
(3)在坐標平面上是否存在定點,使得圓恒過點?若存在,求出的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定點A(-2,0)和B(2,0),曲線E上任一點P滿足|PA|-|PB|=2.
(1)求曲線E的方程;
(2)延長PB與曲線E交于另一點Q,求|PQ|的最小值;
(3)若直線l的方程為x=a(a≤),延長PB與曲線E交于另一點Q,如果存在某一位置,使得從PQ的中點R向l作垂線,垂足為C,滿足PC⊥QC,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,短軸一個端點到右焦點的距離為.
(1)求橢圓的方程;
(2)設(shè)不與坐標軸平行的直線與橢圓交于兩點,坐標原點到直線的距離為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓C:的左、右頂點分別為A1、A2,點P在C上且直線PA2斜率的取值范圍是[﹣2,﹣1],那么直線PA1斜率的取值范圍是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點是雙曲線的左焦點,離心率為e,過F且平行于雙曲線漸近線的直線與圓交于點P,且點P在拋物線上,則e2 =(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在坐標原點,焦點在x軸上且過點P,離心率是.
(1)求橢圓C的標準方程;
(2)直線l過點E (-1,0)且與橢圓C交于A,B兩點,若|EA|=2|EB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

坐標平面上有兩個定點A,B和動點P,如果直線PA,PB的斜率之積為定值m,則點P的軌跡可能是:①橢圓;②雙曲線;③拋物線;④圓;⑤直線.試將正確的序號填在橫線上:         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的離心率,右焦點為,方程的兩個實根,,則點(   )
A.必在圓內(nèi)B.必在圓
C.必在圓D.以上三種情況都有可能

查看答案和解析>>

同步練習冊答案