已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)為F(0,1).

(1)求拋物線C的方程;
(2)過點(diǎn)F作直線交拋物線C于A,B兩點(diǎn),若直線AO,BO分別交直線l:y=x-2于M,N兩點(diǎn),求|MN|的最小值.
(1) x2=4y   (2)

解:(1)由題意可設(shè)拋物線C的方程為x2=2py(p>0),則
=1,所以拋物線C的方程為x2=4y.
(2)設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=kx+1.
消去y,整理得x2-4kx-4=0,
所以x1+x2=4k,x1x2=-4.從而|x1-x2|=4.

解得點(diǎn)M的橫坐標(biāo)xM===.
同理,點(diǎn)N的橫坐標(biāo)xN=.
所以|MN|=|xM-xN|=
=8
=.
令4k-3=t,t≠0,則k=.
當(dāng)t>0時(shí),|MN|=2>2.
當(dāng)t<0時(shí),|MN|=2.
綜上所述,當(dāng)t=-,即k=-時(shí),|MN|的最小值是.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線的焦點(diǎn)為,點(diǎn),線段的中點(diǎn)在拋物線上.設(shè)動(dòng)直線與拋物線相切于點(diǎn),且與拋物線的準(zhǔn)線相交于點(diǎn),以為直徑的圓記為圓
(1)求的值;
(2)試判斷圓軸的位置關(guān)系;
(3)在坐標(biāo)平面上是否存在定點(diǎn),使得圓恒過點(diǎn)?若存在,求出的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)A(-2,0)和B(2,0),曲線E上任一點(diǎn)P滿足|PA|-|PB|=2.
(1)求曲線E的方程;
(2)延長(zhǎng)PB與曲線E交于另一點(diǎn)Q,求|PQ|的最小值;
(3)若直線l的方程為x=a(a≤),延長(zhǎng)PB與曲線E交于另一點(diǎn)Q,如果存在某一位置,使得從PQ的中點(diǎn)R向l作垂線,垂足為C,滿足PC⊥QC,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)不與坐標(biāo)軸平行的直線與橢圓交于兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓C:的左、右頂點(diǎn)分別為A1、A2,點(diǎn)P在C上且直線PA2斜率的取值范圍是[﹣2,﹣1],那么直線PA1斜率的取值范圍是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)是雙曲線的左焦點(diǎn),離心率為e,過F且平行于雙曲線漸近線的直線與圓交于點(diǎn)P,且點(diǎn)P在拋物線上,則e2 =(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上且過點(diǎn)P,離心率是.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l過點(diǎn)E (-1,0)且與橢圓C交于A,B兩點(diǎn),若|EA|=2|EB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

坐標(biāo)平面上有兩個(gè)定點(diǎn)A,B和動(dòng)點(diǎn)P,如果直線PA,PB的斜率之積為定值m,則點(diǎn)P的軌跡可能是:①橢圓;②雙曲線;③拋物線;④圓;⑤直線.試將正確的序號(hào)填在橫線上:         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的離心率,右焦點(diǎn)為,方程的兩個(gè)實(shí)根,,則點(diǎn)(   )
A.必在圓內(nèi)B.必在圓
C.必在圓D.以上三種情況都有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案