已知下列兩個命題:P:函數(shù)f(x)=x2﹣2mx+4(m∈R)在[2,+∞)單調(diào)遞增;Q:關(guān)于x的不等式4x2+4(m﹣2)x+1>0(m∈R)的解集為R;若P∨Q為真命題,P∧Q為假命題,求m的取值范圍.
解:函數(shù)f(x)=x2﹣2mx+4(m∈R)的對稱軸為x=m,
故P為真命題m≤2;
Q為真命題△=[4(m﹣2)]2﹣4×4×1<01<m<3;
又∵P∨Q為真,P∧Q為假,
∴P與Q一真一假;
若P真Q假,則,∴m≤1;
若P假Q(mào)真,則,∴2<m<3;
綜上所述,m的取值范圍{m|m≤1或2<m<3}.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知下列兩個命題:p:?x∈[0,+∞),不等式ax≥
x
-1
恒成立;q:1是關(guān)于x的不等式(x-a)(x-a-1)≤0的一個解.若兩個命題中有且只有一個是真命題,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列兩個命題:P:函數(shù)f(x)=x2-2mx+4(m∈R)在[2,+∞)單調(diào)遞增;Q:關(guān)于x的不等式4x2+4(m-2)x+1>0(m∈R)的解集為R;若P∨Q為真命題,P∧Q為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列兩個命題:
p:?x∈R+,不等式x≥a
x
-1
恒成立;q:y=loga(x2-ax+1)(a>0,a≠1)有最小值.若兩個命題中有且只有一個是真命題,則實數(shù)a的取值范圍是
a=2或a≤1
a=2或a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列兩個命題:p:?x∈R+,不等式x≥a
x
-1
恒成立;q:y=loga(x2-ax+1)(a>0,a≠1)有最小值;若兩個命題中有且只有一個是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江西省高二上學(xué)期期中考試理科數(shù)學(xué)卷 題型:解答題

已知下列兩個命題:P:對任意的實數(shù)x都有恒成立;q:關(guān)于x的方程有實根.若p且q為假,p或q為真,求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案