證明下列不等式:
(1)已知,求證;
(2),求證:.

(1)證明詳見解析;(2)證明詳見解析.

解析試題分析:(1)本小題主要考查基本不等式(當(dāng)且僅當(dāng)時等號成立)的應(yīng)用問題,分別得到、、,進(jìn)而再利用同向不等式的可加性即可得到結(jié)論;(2)本小問,主要考查放縮法與裂項求和法.先由得到,進(jìn)而裂項求和得到,從而問題得證.
(1) 證明:
(當(dāng)且僅當(dāng)時等號成立),(當(dāng)且僅當(dāng)時等號成立),,(當(dāng)且僅當(dāng)時等號成立)        3分
三個不等式相加可得    6分
(2)因為時,

    9分

          12分.
考點(diǎn):1.基本不等式的應(yīng)用;2.不等式的證明——放縮法;3.裂項求和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

不等式≥1的實數(shù)解為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若不等式的解集為空集,求的范圍;
(2)若,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:,當(dāng)時,
當(dāng)時,。
(1)求的解析式
(2)解x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知實數(shù),且,若恒成立.
(1)求實數(shù)m的最小值;
(2)若對任意的恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)a=1時,解不等式
(2)若存在成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,,.求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=|x-3|-2,g(x)=-|x+1|+4.若函數(shù)f(x)-g(x)≥m+1的解集為R,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案