已知向量
m
=(-2,3),
n
=(3,1),則向量2
m
-
n
為(  )
A、(-1,5)
B、(-1,7)
C、(-7,5)
D、(-7,7)
分析:代入坐標(biāo),先數(shù)乘后減法,得結(jié)果.
解答:解:2
m
-
n
=2(-2,3)-(3,1)=(-4,6)-(3,1)=(-7,5).
故選C.
點(diǎn)評(píng):本題考查平面向量的坐標(biāo)運(yùn)算,有減法和數(shù)乘,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(
3
sin2x+2,cosx),
n
=(1,2cosx)
,設(shè)函數(shù)f(x)=
m
n

(1)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,若f(A)=4,b=1,△ABC的面積為
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(2,-1),
n
=(sin
A
2
,cos(B+C)),A、B、C為△ABC的內(nèi)角的內(nèi)角,其所對(duì)的邊分別為a,b,c
(1)當(dāng)
m
n
取得最大值時(shí),求角A的大;
(2)在(1)的條件下,當(dāng)a=
3
時(shí),求b2+c2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量m=(2x-2,2-
3
y),n=(
3
y+2,x+1)
,且m∥n,
OM
=(x,y)
(O為坐標(biāo)原點(diǎn)).
(1)求點(diǎn)M的軌跡C的方程;
(2)是否存在過(guò)點(diǎn)F(1,0)的直線l與曲線C相 交于A、B兩點(diǎn),并且曲線C存在點(diǎn)P,使四邊形OAPB為平行四邊形?若存在,求出平行四邊形OAPB的面積;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知向量
m
=(-2,3),
n
=(3,1),則向量2
m
-
n
為( 。
A.(-1,5)B.(-1,7)C.(-7,5)D.(-7,7)

查看答案和解析>>

同步練習(xí)冊(cè)答案