【題目】在平面直角坐標(biāo)系中,點是直線上的動點,定點 點為的中點,動點滿足.
(1)求點的軌跡的方程
(2)過點的直線交軌跡于兩點,為上任意一點,直線交于兩點,以為直徑的圓是否過軸上的定點? 若過定點,求出定點的坐標(biāo);若不過定點,說明理由。
【答案】(1)(2)以 為直徑的圓過 軸上的定點
【解析】分析:(1)根據(jù)條件可得點的軌跡是以為焦點、以直線為準(zhǔn)線的拋物線,其方程為.(2)假設(shè)以為直徑的圓過軸上的定點, 設(shè) .由題意可得,,由得.設(shè)直線的方程為,與拋物線方程聯(lián)立消元后得到二次方程,結(jié)合根與系數(shù)的關(guān)系和上式可得,解得,進(jìn)而可得以 為直徑的圓過 軸上的定點.
詳解:(1)由已知得垂直平分,故
又軸,
則,
所以點到點的距離和到直線的距離相等,
故點的軌跡是以為焦點、以直線為準(zhǔn)線的拋物線,
由條件可得軌跡的方程為.
(2)假設(shè)以為直徑的圓過軸上的定點 .
設(shè) ,
則 ,
直線 的方程為 ,
令得 即.
同理可得.
由已知得 恒成立,即,
即.
設(shè)直線的方程為 ,
由消去整理得,
所以,
于是,
整理得,
解得 .
故以 為直徑的圓過 軸上的定點.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的圖象與x軸的交點中,相鄰兩條對稱軸之間的距離為,且圖象上一個最低點為M.
(1)求ω,φ的值;
(2)求f(x)的圖像的對稱中心;
(3)當(dāng)x∈時,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面ABCD是矩形,平面ABCD,,E,F(xiàn)是線段BC,AB的中點.
Ⅰ證明:;
Ⅱ在線段PA上確定點G,使得平面PED,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A、B、C三位老師分別教數(shù)學(xué)、英語、體育、勞技、語文、閱讀六門課,每位教兩門.已知:
(1)體育老師和數(shù)學(xué)老師住在一起,
(2)A老師是三位老師中最年輕的,
(3)數(shù)學(xué)老師經(jīng)常與C老師下象棋,
(4)英語老師比勞技老師年長,比B老師年輕,
(5)三位老師中最年長的老師比其他兩位老師家離學(xué)校遠(yuǎn).
問:A、B、C三位老師每人各教哪幾門課?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體中, 在平面的射影為棱的中點, 為棱的中點,過直線作一個平面與平面平行,且與交于點,已知, .
(1)證明: 為線段的中點
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:關(guān)于x的一元二次方程有兩個不相等的實數(shù)根;命題q:關(guān)于x的一元二次方程對于任意實數(shù)a都沒有實數(shù)根.
若命題p為真命題,求實數(shù)m的取值范圍;
若命題p和命題q中有且只有一個為真命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四面體P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC= AB,若四面體P﹣ABC的體積為 ,則該球的體積為( )
A.
B.2π
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“開門大吉”是某電視臺推出的游戲節(jié)目.選手面對1~8號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個年齡段:20~30;30~40(單位:歲),其猜對歌曲名稱與否的人數(shù)如圖所示.
(1)寫出2×2列聯(lián)表;判斷是否有90%的把握認(rèn)為猜對歌曲名稱與否和年齡有關(guān);說明你的理由;(下面的臨界值表供參考) (參考公式:K2= ,其中n=a+b+c+d)
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(2)現(xiàn)計劃在這次場外調(diào)查中按年齡段選取6名選手,并抽取3名幸運(yùn)選手,求3名幸運(yùn)選手中在20~30歲之間的人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com