過橢圓的左焦點作直線交橢圓于、兩點,若存在直線使坐標(biāo)原點恰好在以為直徑的圓上,則橢圓的離心率取值范圍是
A.B.C.D.
D

試題分析:設(shè)AB的中點為M,則 (是左焦點),∴,當(dāng)時,,即,∴2a ,∴,又0<e<1,∴離心率e的取值范圍為,故選D
點評:借助平面幾何圖形可以發(fā)現(xiàn)簡捷解法,抓住橢圓的定義是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點A(,0)作橢圓的弦,弦中點的軌跡仍是橢圓,記為,若的離心率分別為,則的關(guān)系是(     )。
A.B.=2
C.2D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線:的焦點為,、是拋物線上異于坐標(biāo)原點的不同兩點,拋物線在點處的切線分別為、,且,相交于點.

(1) 求點的縱坐標(biāo); 
(2) 證明:、、三點共線;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓:的一個頂點為,離心率為.直線與橢圓交于不同的兩點M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)△AMN得面積為時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的兩焦點為,過軸的垂線交雙曲線于兩點,若內(nèi)切圓的半徑為,則此雙曲線的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的右焦點為,則該雙曲線的漸近線方程為(    )                         
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)過點作直線與拋物線相交于兩點,圓

(1)若拋物線在點處的切線恰好與圓相切,求直線的方程;
(2)過點分別作圓的切線,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知中心在原點O,焦點在x軸上的橢圓E過點(1,),離心率為
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線xy+1=0與橢圓E相交于A、B(BA上方)兩點,問是否存在直線l,使l與橢圓相交于C、D(CD上方)兩點且ABCD為平行四邊形,若存在,求直線l的方程與平行四邊形ABCD的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)
已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案