函數(shù)f(x)=
x1+|x|
,則函數(shù)g(x)=f(x)-x的零點(diǎn)是
0
0
分析:根據(jù)題意函數(shù)f(x)=
x
1+|x|
,要使函數(shù)g(x)有零點(diǎn),代入通項即可求解;
解答:解:函數(shù)f(x)=
x
1+|x|
,則函數(shù)g(x)=f(x)-x,
令g(x)=0,可得f(x)=x,即
x
1+|x|
=x,
可得
x-x-x|x|
1+|x|
=0即
-x|x|
1+|x|
=0可得x=0,
故答案為0;
點(diǎn)評:此題主要考查函數(shù)的零點(diǎn)問題,利用通分法可以很容易求解;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=
x1+|x|
,下列結(jié)論正確的是

①f(x)在(-∞,+∞)上不是單調(diào)函數(shù)
②?m∈(0,1),使得方程f(x)=m有兩個不等的實(shí)數(shù)解;
③?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個零點(diǎn);
④?x1,x2∈R,若x1≠x2,則f(x1)≠f(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•南匯區(qū)二模)三位同學(xué)在研究函數(shù)f(x)=
x
1+|x|
(x∈R) 時,分別給出下面三個結(jié)論:
①函數(shù)f(x)的值域為 (-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則fn(x)=
x
1+n|x|
對任意n∈N*恒成立.
你認(rèn)為上述三個結(jié)論中正確的個數(shù)有
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
x1+|x|
,則滿足f(2-x2)+f(x)<0的x的取值范圍是
(-1,2)
(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
1-x
(0<x<1)
的反函數(shù)為f-1(x).設(shè)數(shù)列{an}滿足a1=1,an+1=f-1(an)(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)已知數(shù)列{bn}滿足b1=
1
2
,bn+1=(1+bn)2f-1(bn)
,求證:對一切正整數(shù)n≥1都有
1
a1+b1
+
1
2a2+b2
+
+
1
nan+bn
<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽一模)已知函數(shù)f(x)=
αx
1+xα
(x>0,α
為常數(shù)),數(shù)列{an}滿足:a1=
1
2
,an+1=f(an),n∈N*.
(1)當(dāng)α=1時,求數(shù)列{an}的通項公式;
(2)在(1)的條件下,證明對?n∈N*有:a1a2a3+a2a3a4+…+anan+1an+2=
n(n+5)
12(n+2)(n+3)

(3)若α=2,且對?n∈N*,有0<an<1,證明:an+1-an
2
+1
8

查看答案和解析>>

同步練習(xí)冊答案