對(duì)于一般的三次函數(shù)f(x)=ax3+bx2+cx+d,(a≠0)定義:設(shè)f''(x)是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f'(x)的導(dǎo)數(shù).若f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”,現(xiàn)已知:g(x)=(x-a)(x-b)(x-c),請(qǐng)解答下列問(wèn)題:
(Ⅰ).若y=g(x)是R上的增函數(shù),求證a=b=c;
(Ⅱ)在(Ⅰ).的條件下,求函數(shù)y=g(x)的“拐點(diǎn)”A的坐標(biāo),并證明函數(shù)y=g(x)的圖象關(guān)于“拐點(diǎn)”A成中心對(duì)稱.
(I)∵g(x)=(x-a)(x-b)(x-c),
∴g'(x)=(x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)
=3x2-2(a+b+c)x+ab+bc+ac,
∵y=g(x)是R上的增函數(shù),
∴g'(x)=3x2-2(a+b+c)x+ab+bc+ac≥0在R上恒成立
即4(a+b+c)2-12(ab+bc+ac)≤0
則2a2+2b2+2c2-2(ab+bc+ac)≤0即(a-b)2+(b-c)2+(a-c)2≤0
∴a=b=c;
(II)由(I)得y=g(x)=(x-a)3
g'(x)=3(x-a)2,g''(x)=6(x-a)=0
解得x=a
∴函數(shù)y=g(x)的“拐點(diǎn)”A的坐標(biāo)為(a,0)
設(shè)函數(shù)y=g(x)圖象上任意一點(diǎn)(x,y)則關(guān)于(a,0)的對(duì)稱點(diǎn)為(2a-x,-y)
根據(jù)g(2a-x)=(a-x)3=-g(x)可知點(diǎn)(2a-x,-y)也在函數(shù)y=g(x)圖象上
∴函數(shù)y=g(x)的圖象關(guān)于“拐點(diǎn)”A(a,0)成中心對(duì)稱.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于一般的三次函數(shù)f(x)=ax3+bx2+cx+d,(a≠0)定義:設(shè)f''(x)是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f'(x)的導(dǎo)數(shù).若f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”,現(xiàn)已知:g(x)=(x-a)(x-b)(x-c),請(qǐng)解答下列問(wèn)題:
(Ⅰ).若y=g(x)是R上的增函數(shù),求證a=b=c;
(Ⅱ)在(Ⅰ).的條件下,求函數(shù)y=g(x)的“拐點(diǎn)”A的坐標(biāo),并證明函數(shù)y=g(x)的圖象關(guān)于“拐點(diǎn)”A成中心對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對(duì)于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請(qǐng)給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:福建省高考真題 題型:解答題

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C,
(ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(ⅱ)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1,S2,則為定值;
(Ⅱ)對(duì)于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請(qǐng)給出類似于(Ⅰ)(ⅱ)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年新課標(biāo)高三(上)數(shù)學(xué)一輪復(fù)習(xí)單元驗(yàn)收2(文科)(解析版) 題型:解答題

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則為定值;
(Ⅱ)對(duì)于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請(qǐng)給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案