【題目】如圖所示,橢圓的短軸為,,離心率,為第一象限內(nèi)橢圓上的任意一點,設(shè)軸于,為線段的中點,過作直線軸.
(1)求橢圓的方程;
(2)若的縱坐標(biāo)為,求直線截橢圓所得的弦長;
(3)若直線交直線于,為直線上一點,且為原點),證明:為線段的中點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點.
(Ⅰ)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 為自然對數(shù)的底數(shù), .
(1)試討論函數(shù)的單調(diào)性;
(2)當(dāng)時, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是圓的直徑,點是圓上異于的點, 垂直于圓所在的平面,且.
(1)若為線段的中點,求證平面;
(2)求三棱錐體積的最大值;
(3)若,點在線段上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中歐班列是推進(jìn)與“一帶一路”沿線國家道路聯(lián)通、貿(mào)易暢通的重要舉措,作為中歐鐵路在東北地區(qū)的始發(fā)站,沈陽某火車站正在不斷建設(shè).目前車站準(zhǔn)備在某倉庫外,利用其一側(cè)原有墻體,建造一間墻高為3米,底面為12平方米,且背面靠墻的長方體形狀的保管員室.由于此保管員室的后背靠墻,無需建造費用,因此甲工程隊給出的報價為:屋子前面新建墻體的報價為每平方米400元,左右兩面新建墻體報價為每平方米150元,屋頂和地面以及其他報價共計7200元.設(shè)屋子的左右兩側(cè)墻的長度均為米.
(1)當(dāng)左右兩面墻的長度為多少時,甲工程隊報價最低?
(2)現(xiàn)有乙工程隊也參與此保管員室建造競標(biāo),其給出的整體報價為元,若無論左右兩面墻的長度為多少米,乙工程隊都能競標(biāo)成功,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018安徽淮南市高三一模(2月)】已知函數(shù).
(I)若,討論函數(shù)的單調(diào)性;
(II)曲線與直線交于, 兩點,其中,若直線斜率為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓的左右焦點,點為其上一點,且有
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過的直線與橢圓交于兩點,過與平行的直線與橢圓交于兩點,求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直三棱柱中, , , ,點, 分別是的中點.
(Ⅰ)求證: 平面;
(Ⅱ)若二面角的大小為,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com