A. | -5 | B. | -1 | C. | 3 | D. | 4 |
分析 推導出f(x)=$\frac{2x+asinx}{{x}^{2}+1}+4$,令g(x)=f(x)-4=$\frac{2x+asinx}{{x}^{2}+1}$,由此能求出結果.
解答 解:f(x)=$\frac{{{{(x+1)}^2}+asinx}}{{{x^2}+1}}$+3
=$\frac{{x}^{2}+2x+1+asinx}{{x}^{2}+1}$+3
=$\frac{2x+asinx}{{x}^{2}+1}+4$,
令g(x)=f(x)-4=$\frac{2x+asinx}{{x}^{2}+1}$,
則g(x) 為奇函數,
g(ln(log25)=f(ln(log25))-4=1,
g(ln(log52))=g(ln($\frac{1}{lo{g}_{2}5}$))=g(-ln(log25)=-1,
f(ln(log52))=g(ln(log52))+4=3.
故選:C.
點評 本題考查函數值的求法,是中檔題,解題時要認真審題,注意函數性質的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $y=\sqrt{2}x$ | B. | $y=\sqrt{3}x$ | C. | y=2x | D. | y=4x |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 直角三角形 | B. | 銳角三角形 | C. | 鈍角三角形 | D. | 正三角形 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $y={5^{\frac{1}{2-x}}}$ | B. | $y={({\frac{1}{3}})^{1-x}}$ | C. | $y=\sqrt{1-{2^x}}$ | D. | $y=\sqrt{{{(\frac{1}{2})}^x}-1}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com