在△ABC中,a、b、c分別表示三個(gè)內(nèi)角A、B、C的對(duì)邊,如果(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判斷三角形的形狀.
△ABC為等腰或直角三角形
方法一 已知等式可化為
a2[sin(A-B)-sin(A+B)]=b2[-sin(A+B)-sin(A-B)]
∴2a2cosAsinB=2b2cosBsinA
由正弦定理可知上式可化為:
sin2AcosAsinB=sin2BcosBsinA
∴sinAsinB(sinAcosA-sinBcosB)=0
∴sin2A=sin2B,由0<2A,2B<2
得2A=2B或2A=-2B,
即A=B或A=-B,∴△ABC為等腰或直角三角形.
方法二 同方法一可得2a2cosAsinB=2b2sinAcosB
由正、余弦定理,可得
a2b= b2a
∴a2(b2+c2-a2)=b2(a2+c2-b2)
即(a2-b2)(a2+b2-c2)=0
∴a=b或a2+b2=c2
∴△ABC為等腰或直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||||
B、1 | ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
. |
m |
C |
2 |
C |
2 |
. |
n |
C |
2 |
C |
2 |
m |
n |
1 |
2 |
11 |
2 |
3
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π |
6 |
1 |
2 |
3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com