分析 聯(lián)立直線與橢圓的方程得關(guān)于x的一元二次方程;設(shè)出A、B兩點(diǎn)的坐標(biāo),由根與系數(shù)的關(guān)系,可得x1+x2,y1+y2;從而得線段AB的中點(diǎn)坐標(biāo),得出a、c的關(guān)系,從而求得橢圓的離心率.
解答 解:由$\left\{\begin{array}{l}{x-2y+3=0}\\{^{2}{x}^{2}+{a}^{2}{y}^{2}={a}^{2}^{2}}\end{array}\right.$,
消去x,得(4b2+a2)x2-12b2x+9b2-a2b2=0,
△=144b4-4(a2+4b2)(9b2-a2b2)>0⇒a2+4b2>9,
設(shè)A(x1,y1),B(x2,y2),則y1+y2=$\frac{12^{2}}{{a}^{2}+4^{2}}$,
∵線段AB的中點(diǎn)為(-1,1),
∴$\frac{12^{2}}{{a}^{2}+4^{2}}$=2,于是得a2=2b2,
又a2=b2+c2,∴a2=2c2,∴e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{{\sqrt{2}}}{2}$.
.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程、橢圓的簡(jiǎn)單性質(zhì)、直線與橢圓的綜合應(yīng)用問題,也考查了一定的邏輯思維能力和計(jì)算能力.解題時(shí)應(yīng)細(xì)心解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\frac{3}{2},+∞})$ | B. | (0,+∞) | C. | $({0,\frac{3}{2}})$ | D. | $({\frac{3}{2},3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{7}$ | B. | 3 | C. | $\frac{1}{3}$ | D. | $\frac{{\sqrt{7}}}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=n-1 | B. | an=n | C. | an=n+1 | D. | an=n2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com