設(shè)x+3y=2,則函數(shù)z=3x+27y的最小值是( 。
A、12B、27C、6D、30
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:利用基本不等式的性質(zhì)與指數(shù)運算的性質(zhì)即可得出.
解答: 解:∵x+3y=2,
∴函數(shù)z=3x+27y=≥2
3x×27y
=2
3x+3y
=6,
當(dāng)且僅當(dāng)x=3y=1時取等號.
∴函數(shù)z=3x+27y的最小值是6.
故選:C.
點評:本題考查了基本不等式的性質(zhì)與指數(shù)運算的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=6cos2
ωx
2
+
3
sinωx-3(ω>0)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點,B.C為圖象與x軸的交點,且△ABC為正三角形.
(1)若x∈[0,1],求函數(shù)f(x)的值域;
(2)若f(x0)=
8
3
5
,且x0∈(-
10
3
,
2
3
),求f(x0)+1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式
x-2
ax+b
>0的解集為(-1,2),m是二項式(ax-
b
x2
6的展開式的常數(shù)項,那么
ma
a7+2b7
=( 。
A、-15B、-5C、-5aD、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x-4|,x∈[0,m],其中m∈R且m>0.如果函數(shù)f(x)的值域為[0,λm2],試求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(x,y)滿足的不等式組
x≥0
y≥x
kx-y+1≥0
(k是常數(shù))所表示的平面區(qū)域的邊界是一個直角三角形,則x-3y的最小值為( 。
A、-3或0B、-或0
C、-3D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

0.70.8與0.80.7的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x-4)2+(y+1)2=1,圓N與圓M關(guān)于直線y=2x-4對稱,則圓N的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式x2-5x-6<0的解集是( 。
A、{x|2<x<3}
B、{x|x<-1或x>6}
C、{x|x<2或x>3}
D、{x|-1<x<6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點B(0,0),C(5,0),AB邊上的中線長|CD|=3,則頂點A的軌跡方程為
 

查看答案和解析>>

同步練習(xí)冊答案