(2012•泉州模擬)設(shè)向量
a
=(1,1),k∈R,下列向量
b
a
不可能垂直的是( 。
分析:欲判定向量
a
與向量
b
是否可能垂直,只需判定
a
b
=0是否有解即可,根據(jù)選項注意判定即可.
解答:解:
a
=(1,1)
選項A:
b
=(k,k+1),
a
b
=(1,1)•(k,k+1)=2k+1,當(dāng)k=-
1
2
時,兩向量垂直;
選項B:
b
=(k2,1),
a
b
=(1,1)•(k2,1)=k2+1=0無解,故兩向量不可能垂直;
選項C:
b
=(k,k-1),
a
b
=(1,1)•(k,k-1)=2k-1,當(dāng)k=
1
2
時,兩向量垂直;
選項D:
b
=(k2,-1),),
a
b
=(1,1)•(k2,-1)=k2-1,當(dāng)k=±1時,兩向量垂直;
故選B.
點評:本題主要考查了數(shù)量積判斷兩個平面向量的垂直關(guān)系,同時考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)已知f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N*).
(Ⅰ)請寫出fn(x)的表達(dá)式(不需證明);
(Ⅱ)設(shè)fn(x)的極小值點為Pn(xn,yn),求yn
(Ⅲ)設(shè)gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值為a,fn(x)的最小值為b,試求a-b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)下列函數(shù)中,既是偶函數(shù),且在區(qū)間(0,+∞)內(nèi)是單調(diào)遞增的函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)已知集合A={1,2,3},B={x|x2-x-2=0,x∈R},則A∩B為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)設(shè)函數(shù)f(x)=ax2+lnx.
(Ⅰ)當(dāng)a=-1時,求函數(shù)y=f(x)的圖象在點(1,f(1))處的切線方程;
(Ⅱ)已知a<0,若函數(shù)y=f(x)的圖象總在直線y=-
12
的下方,求a的取值范圍;
(Ⅲ)記f′(x)為函數(shù)f(x)的導(dǎo)函數(shù).若a=1,試問:在區(qū)間[1,10]上是否存在k(k<100)個正數(shù)x1,x2,x3…xk,使得f′(x1)+f'(x2)+f′(x3)+…+f′(xk)≥2012成立?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)設(shè)函數(shù)y=f(x)的定義域為D,若對于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,則稱點(a,b)為函數(shù)y=f(x)圖象的對稱中心.研究并利用函數(shù)f(x)=x3-3x2-sin(πx)的對稱中心,可得f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=(  )

查看答案和解析>>

同步練習(xí)冊答案