|
|
已知f(x)=|x+1|+|x-1|,不等式f(x)<4的解集為M.
(1)求M;
(2)當(dāng)a,b∈M時(shí),證明:2|a+b|<|4+ab|.
|
|
|
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知集合A={x|2x-x2>0},B={x|x>1},R為實(shí)數(shù)集,則(CRB)∩A=
|
[ ] |
A. |
(-∞,0)
|
B. |
(0,1)
|
C. |
(0,1]
|
D. |
[1,2)
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
如圖所示的七面體是由三棱臺ABC-A1B1C1和四棱錐D-AA1C1C對接而成,四邊形ABCD是邊長為2的正方形,BB1⊥平面ABCD,BB1=2A1B1=2.
(Ⅰ)求證:平面AA1C1C1⊥平面BB1D;
(Ⅱ)求二面角A-A1D-C1的余弦值.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
橢圓的左右焦點(diǎn)分別為F1,F(xiàn)2,弦AB過F1,若△ABF2的內(nèi)切圓周長為π,A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),則|y1-y2|值為
|
[ ] |
A. |
|
B. |
|
C. |
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知在四棱錐P-ABCD中,底面ABCD是邊長為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F(xiàn),G分別是PA,PB,BC的中點(diǎn).
(Ⅰ)求平面EFG與平面ABCD所成銳二面角的大小;
(Ⅱ)若M為線段AB上靠近A的一個(gè)動點(diǎn),問當(dāng)AM長度等于多少時(shí),直線MF與平面EFG所成角的正弦值等于?
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
執(zhí)行下圖的程序框圖,若輸出的n=5,則輸入整數(shù)p的最小值是
|
[ ] |
A. |
7
|
B. |
14
|
C. |
15
|
D. |
6
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
橢圓的左右焦點(diǎn)分別為F1,F(xiàn)2,弦AB過F1,若△ABF2的內(nèi)切圓周長為π,A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),則|y1-y2|值為
|
[ ] |
A. |
|
B. |
|
C. |
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-<φ<)的部分圖象如圖所示,則y=f(x)的圖象可由函數(shù)y=sinx的圖象(縱坐標(biāo)不變)作下述變換得到
|
[ ] |
A. |
先把各點(diǎn)的橫坐標(biāo)縮短到原來的倍,再向右平移個(gè)單位
|
B. |
先把各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,再向右平移個(gè)單位
|
C. |
先把各點(diǎn)的橫坐標(biāo)縮短到原來的倍,再向右平移個(gè)單位
|
D. |
先把各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,再向左平移個(gè)單位
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
“l(fā)gx,lgy,lgz成等差數(shù)列”是“y2=xz”成立的
|
[ ] |
A. |
充分非必要條件;
|
B. |
必要非充分條件;
|
C. |
充要條件
|
D. |
既非充分也非必要條件
|
|
|
查看答案和解析>>