函數(shù)f(x)=lg(1+x2),g(x)=2-|x|,h(x)=tan2x中,    是偶函數(shù).
【答案】分析:利用奇函數(shù)和偶函數(shù)的定義進行判斷.f(x),g(x),滿足偶函數(shù)的定義,h(x)滿足奇函數(shù)的定義.
解答:解:①若f(x)=lg(1+x2),則函數(shù)f(x)的定義域為R,則f(-x)=lg(1+x2)=f(x),所以f(x)是偶函數(shù).
②若g(x)=2-|x|,則函數(shù)g(x)的定義域為R,則g(-x)=2-|x|=g(x),所以g(x)是偶函數(shù).
③若h(x)=tan2x,則函數(shù)f(x)的定義域為{x|2x}={x|x},則h(-x)=tan(-2x)=-tan2x=-h(x),
所以h(x)是奇函數(shù).
故答案為:f(x),g(x).
點評:本題主要考查了函數(shù)奇偶性的判斷,判斷函數(shù)的奇偶性,先要判斷函數(shù)的定義域是否關于原點對稱,
  然后再判斷是否滿足關系式f(-x)=f(x)或f(-x)=-f(x),從而確定函數(shù)的奇偶性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=lg(x2-4x)的單調遞增區(qū)間是
(4,+∞)
(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=lg(ax2-ax+4)的定義域為R,則實數(shù)a的取值范圍是
0≤a<16
0≤a<16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg(mx2+mx+1)的定義域是一切實數(shù),則m的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:函數(shù)f(x)=lg(3x-9)的定義域為A,集合B={x|2x-a<0,a∈R}.
(Ⅰ)求集合A;
(Ⅱ)求A∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=lg(3x-2)+2恒過定點
 
;a⊕b=ab,a?b=a2+b2則函數(shù)f(x)=
2⊕xx?2-2
 

查看答案和解析>>

同步練習冊答案