一次擲硬幣游戲,共有六位學(xué)生參加.游戲規(guī)定每位學(xué)生都將一枚均勻的硬幣連拋兩次,并記錄結(jié)果.若兩次中至少有一次正面向上,則稱該同學(xué)拋擲成功,否則稱拋擲失。螅
(I)六名學(xué)生中的某學(xué)生甲拋擲成功的概率;
(II)拋擲成功的人數(shù)不少于失敗的人數(shù)的概率;
(III)拋擲成功的人數(shù)ξ的數(shù)學(xué)期望.
分析:(I)由已知中游戲規(guī)定每位學(xué)生都將一枚均勻的硬幣連拋兩次,并記錄結(jié)果.若兩次中至少有一次正面向上,則稱該同學(xué)拋擲成功,否則稱拋擲失。覀兞谐鏊星闆r的基本事件個數(shù),及滿足條件甲拋擲成功的基本事件個數(shù),然后代入古典概型公式,即可得到答案.
(II)拋擲成功的人數(shù)不少于失敗的人數(shù)是拋擲成功的人數(shù)少于失敗的人數(shù),計算出拋擲成功的人數(shù)少于失敗的人數(shù)的概率,然后利用對立事件概率減法公式,即可求出拋擲成功的人數(shù)不少于失敗的人數(shù)的概率;
(III)每名學(xué)生拋擲成功的概率均相等,且每名學(xué)生拋擲成功的概率均為
,代入數(shù)學(xué)期望公式,即可得到答案.
解答:解:(1)每位學(xué)生都將一枚均勻的硬幣連拋兩次,
結(jié)果共有(正,正),(正,反),(反,正),(反,反)4種,
其中該同學(xué)拋擲成功的情況有(正,正),(正,反),(反,正)三種
∴學(xué)生甲拋擲成功的概率
P=(4分)
(II)拋擲成功的人數(shù)不少于失敗的人數(shù)是拋擲成功的人數(shù)少于失敗的人數(shù)共包括如下幾種情況:
六名學(xué)生都失敗,概率為
()0()6五名學(xué)生失敗,一名學(xué)生成功,概率為
××()5四名學(xué)生失敗,二名學(xué)生成功,概率為
()2()4故拋擲成功的人數(shù)不少于失敗的人數(shù)的概率
P=1-(()0()6+××()5+()2()4)=
(8分)
(III)∵每名學(xué)生拋擲成功的概率均相等
且每名學(xué)生拋擲成功的概率均為
∴
Eξ=6×=(12分)
點評:本題考查的知識點是n次獨立重復(fù)試驗中恰好發(fā)生k次的概率,相互獨立事件的概率乘法公式及離散型隨機變量的期望,其中熟練掌握n次獨立重復(fù)試驗中恰好發(fā)生k次的概率公式是解答本題的關(guān)鍵.