在△ABC中,tanB=
3
ac
a2+c2-b2
,則角B=
60°或120°
60°或120°
分析:利用余弦定理表示出cosB,將已知的等式變形后代入,再利用同角三角函數(shù)間的基本關系切化弦后,求出sinB的值,由B為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出B的度數(shù).
解答:解:∵tanB=
3
ac
a2+c2-b2
,
a2+c2-b2
2ac
=
3
2tanB
,又cosB=
a2+c2-b2
2ac

∴cosB=
3
2tanB
=
3
cosB
2sinB
,即sinB=
3
2
,
∵B為三角形的內(nèi)角,
則B=60°或120°.
故答案為:60°或120°
點評:此題考查了余弦定理,同角三角函數(shù)間的基本關系,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:數(shù)學教研室 題型:022

在△ABC中,tan B=1,tan C=2,b=100,則a=_______.

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:022

在△ABC中,tan B=1,tan C=2,b=100,則a=__________.

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省湖州中學2010屆高三下學期第一次月考數(shù)學理科試題 題型:013

在△ABC中,tan,=0,則過點C,以A、H為兩焦點的橢圓的離心率為

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省湖州中學2010屆高三下學期第一次月考數(shù)學文科試題 題型:013

在△ABC中,tan=0,=0,則過點C,以A、H為兩焦點的橢圓的離心率為

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源:0103 期中題 題型:解答題

在△ABC中,tan=2sinC。
(1) 求∠C的大。
(2) 求y=sinA+sinB+sinC的取值范圍。

查看答案和解析>>

同步練習冊答案