(文科)已知焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0)的橢圓經(jīng)過(guò)點(diǎn)

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)P是橢圓上的點(diǎn),△PF1F2的外接圓為⊙C,求半徑最小時(shí)⊙C的方程.

答案:
解析:

  (1)設(shè)此橢圓方程為,點(diǎn)在橢圓上,,

  ∴

  ∴,又,所以,于是,橢圓方程為  4分

  (2)設(shè)是橢圓上一點(diǎn),的外接圓圓心的坐標(biāo)為,則點(diǎn)分別在線段的垂直平分線上

  ∴點(diǎn)的坐標(biāo)滿足方程組

  故點(diǎn)的坐標(biāo)為

  半徑

  其中,記,則上是減函數(shù)

  ∴,此時(shí),即時(shí)

  半徑有最小值,圓心

  所以半徑最小的⊙的方程為  12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科做(1)(2)(4),理科全做)
已知過(guò)拋物線C1:y2=2px(p>0)焦點(diǎn)F的直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn) 
(1)證明:y1y2=-p2且(y1+y22=2p(x1+x2-p);
(2)點(diǎn)Q為線段AB的中點(diǎn),求點(diǎn)Q的軌跡方程;
(3)若x1=1,x2=4,以坐標(biāo)軸為對(duì)稱軸的橢圓或雙曲線C2過(guò)A、B兩點(diǎn),求曲線C1和C2的方程;
(4)在(3)的條件下,若曲線C2的兩焦點(diǎn)分別為F1、F2,線段AB上有兩點(diǎn)C(x3,y3),D(x4,y4)(x3<x4),滿足:①SF1F2A-SF1F2C=SF1F2D-SF1F2B,②AB=3CD.在線段F1 F2上是否存在一點(diǎn)P,使PD=
11
,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB是過(guò)拋物線y2=2px(p>0)的焦點(diǎn)的弦,F(xiàn)為拋物線的焦點(diǎn),點(diǎn)A(x1,y1),B(x2,y2).
求證:
(1)|AB|=x1+x2+p;
(2)y1 y2=-p2,x1 x2=
p2
4
;
(3)(理科)直線的傾斜角為θ時(shí),求弦長(zhǎng)|AB|.
(3)(文科)當(dāng)p=2,直線AB的傾斜角為
π
4
時(shí),求弦長(zhǎng)|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知AB是過(guò)拋物線y2=2px(p>0)的焦點(diǎn)的弦,F(xiàn)為拋物線的焦點(diǎn),點(diǎn)A(x1,y1),B(x2,y2).
求證:
(1)|AB|=x1+x2+p;
(2)y1 y2=-p2,x1 x2=數(shù)學(xué)公式;
(3)(理科)直線的傾斜角為θ時(shí),求弦長(zhǎng)|AB|.
(3)(文科)當(dāng)p=2,直線AB的傾斜角為數(shù)學(xué)公式時(shí),求弦長(zhǎng)|AB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案