15.設(shè)實(shí)數(shù)x1、x2是函數(shù)$f(x)=|{lnx}|-{({\frac{1}{2}})^x}$的兩個(gè)零點(diǎn),則( 。
A.x1x2<0B.0<x1x2<1C.x1x2=1D.x1x2>1

分析 能夠分析出f(x)的零點(diǎn)便是函數(shù)y=|lnx|和函數(shù)y=($\frac{1}{2}$)x交點(diǎn)的橫坐標(biāo),從而可畫出這兩個(gè)函數(shù)圖象,由圖象懶蟲不等式組,然后求解即可.

解答 解:令f(x)=0,∴|lnx|=($\frac{1}{2}$)x;
∴函數(shù)f(x)的零點(diǎn)便是上面方程的解,即是函數(shù)y=|lnx|和函數(shù)y=($\frac{1}{2}$)x的交點(diǎn),
畫出這兩個(gè)函數(shù)圖象如下:

由圖看出$\frac{1}{2}$<-lnx1<1,-1<lnx1<0,0<lnx2<$\frac{1}{2}$;
∴-1<lnx1+lnx2<0;
∴-1<lnx1x2<0;
∴0<$\frac{1}{e}$<x1x2<1
故選:B.

點(diǎn)評(píng) 考查函數(shù)零點(diǎn)的概念,函數(shù)零點(diǎn)和方程解的關(guān)系,方程f(x)=g(x)的解和函數(shù)f(x)與g(x)交點(diǎn)的關(guān)系,對(duì)數(shù)的運(yùn)算,以及對(duì)數(shù)函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在等差數(shù)列{an}中,a1=-6,公差為d,前n項(xiàng)和為Sn,當(dāng)且僅當(dāng)n=6時(shí),Sn取得最小值,則d的取值范圍為( 。
A.$(-1,-\frac{7}{8})$B.(0,+∞)C.(-∞,0)D.$(1,\frac{6}{5})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為$ρ=\sqrt{2}$,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=2+tcosα\\ y=2+tsinα\end{array}\right.$(t為參數(shù)).
(1)點(diǎn)P在曲線C上,Q在直線l上,若$α=\frac{3}{4}π$,求線段|PQ|的最小值;
(2)設(shè)直線l與曲線C有兩個(gè)不同的交點(diǎn),求直線l的斜率k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P為線段AD(含端點(diǎn))上一個(gè)動(dòng)點(diǎn),設(shè)$\overrightarrow{AP}=x\overrightarrow{AD}$,$\overrightarrow{PB}•\overrightarrow{PC}=y$,則得到函數(shù)y=f(x).
(Ⅰ)求f(1)的值;
(Ⅱ)對(duì)于任意a∈(0,+∞),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若角α的始邊是x軸正半軸,終邊過點(diǎn)P(4,-3),則cosα的值是( 。
A.4B.-3C.$\frac{4}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)$f(x)=\left\{\begin{array}{l}{(x-1)^2},x≥0\\{2^x},\;x<0\end{array}\right.$若f(x)在$(a,a+\frac{3}{2})$上既有最大值又有最小值,則實(shí)數(shù)a的取值范圍是(-$\frac{1}{2}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=3x+4x-8的零點(diǎn)在區(qū)間[k,k+1](k∈Z)上,則函數(shù)g(x)=x-kex的極大值為(  )
A.-3B.0C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示的幾何體中,四邊形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=$\frac{π}{3}$,AD=4,AM=2,E是AB的中點(diǎn)
(1)求證:平面MDE⊥平面NDC
(2)求三棱錐N-MDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=ax3+6x2+(a-1)x-5有極值的充要條件是( 。
A.a=-3或a=4B.-3<a<4C.a>4或a<-3D.a∈R

查看答案和解析>>

同步練習(xí)冊(cè)答案