設(shè)P為曲線為參數(shù))上任意一點(diǎn),A(3,5),則|PA|的最小值為    
【答案】分析:設(shè)P的坐標(biāo)為(x,y),然后根據(jù)兩點(diǎn)間的距離公式表示出|PA|的長,把所表示的式子化簡后,利用兩角和的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),根據(jù)正弦函數(shù)的值域即可得到|PA|的最小值.
解答:解:設(shè)P(x,y),則|PA|=
==
(其中α為銳角且sinα=
當(dāng)sin(α+θ)=1時(shí),|PA|最小,所以|PA|的最小值為=4
故答案為:4
點(diǎn)評:此題考查學(xué)生靈活運(yùn)用兩點(diǎn)間的距離公式化簡求值,靈活運(yùn)用兩角和的正弦函數(shù)公式化簡求值,掌握正弦函數(shù)值域的求法,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P為曲線
x=-1+cosθ
y=2+sinθ
為參數(shù))上任意一點(diǎn),A(3,5),則|PA|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題設(shè)有(1)、(2)、(3)三個(gè)選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分,作答時(shí),先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設(shè)矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1;
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對應(yīng)的線性變換作用下得到曲線C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在直接坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cos∂
y=sin∂
(∂為參數(shù))

(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,
π
2
),判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設(shè)不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計(jì)20分.請?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長線交⊙O于N,過
N點(diǎn)的切線交CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長.
B.選修4-2:矩陣與變換
曲線x2+4xy+2y2=1在二階矩陣M=
.
1a
b1
.
的作用下變換為曲線x2-2y2=1,求實(shí)數(shù)a,b的值;
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
y=-1-
3
5
(t為參數(shù)),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
設(shè)a,b,c均為正實(shí)數(shù).
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年西城區(qū)抽樣理)設(shè)P為曲線為參數(shù))上任意一點(diǎn),,則的最小值為______________

查看答案和解析>>

同步練習(xí)冊答案