若等邊△ABC的邊長為,平面內(nèi)一點M滿足,則=( )
A.-2
B.2
C.
D.
【答案】分析:先用向量表示出向量,再求內(nèi)積即可得解
解答:解:∵
=

==
==
故選A
點評:本題考查向量的加減運算、線性表示和向量的數(shù)量積,須特別注意向量的線性表示,求數(shù)量積時須注意兩個向量的夾角.屬簡單題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若等邊△ABC的邊長為2
3
,平面內(nèi)一點M滿足
CM
=
1
6
CB
+
2
3
CA
,則
MA
MB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等邊△ABC的邊長為2,平面內(nèi)一點M滿足
CM
=
1
3
CB
+
1
2
CA
,則
MA
MB
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟寧一模)若等邊△ABC的邊長為2
3
,平面內(nèi)一點M滿足
CM
=
1
3
CB
+
1
3
CA
,則
MA
MB
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)必修四2.4平面向量的數(shù)量積練習(xí)卷(一)(解析版) 題型:填空題

(09·天津文)若等邊△ABC的邊長為2,平面內(nèi)一點M滿足,則·=______________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:天津 題型:填空題

若等邊△ABC的邊長為2
3
,平面內(nèi)一點M滿足
CM
=
1
6
CB
+
2
3
CA
,則
MA
MB
=______.

查看答案和解析>>

同步練習(xí)冊答案