【題目】已知:θ為第一象限角, =(sin(θ﹣π),1), =(sin( ﹣θ),﹣ ),
(1)若 ,求 的值;
(2)若| + |=1,求sinθ+cosθ的值.

【答案】
(1)解:∵ =(sin(θ﹣π),1), =(sin( ﹣θ),﹣ ),

∴﹣ sin(θ﹣π)=sin( ﹣θ),可得: sinθ=cosθ

又∵θ為第一象限角,可得:tanθ=2,

= =5


(2)解:∵| + |=1, + =(cosθ﹣sinθ, ),

∴(cosθ﹣sinθ)2+( 2=1,解得:2sinθcosθ= ,

∴sinθ+cosθ= =


【解析】(1)利用向量共線定理可得 sinθ=cosθ,解得tanθ.再利用弦化切即可得解.(2)利用平面向量的坐標(biāo)運(yùn)算可求2sinθcosθ= ,進(jìn)而計(jì)算得解sinθ+cosθ的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大學(xué)生村官王善良落實(shí)政府“精準(zhǔn)扶貧”精神,幫助貧困戶張三用9萬元購進(jìn)一部節(jié)能環(huán)保汽車,用于出租.假設(shè)第一年需運(yùn)營費(fèi)用2萬元,從第二年起,每年運(yùn)營費(fèi)用均比上一年增加2萬元,該車每年的運(yùn)營收入均為11萬元.若該車使用了n(n∈N*)年后,年平均盈利額達(dá)到最大值,則n等于(注:年平盈利額=(總收入﹣總成本)× )(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,關(guān)于正方體ABCD﹣A1B1C1D1 , 下面結(jié)論錯(cuò)誤的是(
A.BD⊥平面ACC1A1
B.AC⊥BD
C.A1B∥平面CDD1C1
D.該正方體的外接球和內(nèi)接球的半徑之比為2:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P為線段y=2x,x∈[2,4]上任意一點(diǎn),點(diǎn)Q為圓C:(x﹣3)2+(y+2)2=1上一動(dòng)點(diǎn),則線段|PQ|的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2﹣1=0},A∩B=B,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面垂直,體積為 ,底面是邊長為 的正三角形,若P為底面A1B1C1的中心,則PA與平面A1B1C1所成角的大小為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|ax﹣x2|+2b(a,b∈R).
(1)當(dāng)a=﹣2,b=﹣ 時(shí),解方程f(2x)=0;
(2)當(dāng)b=0時(shí),若不等式f(x)≤2x在x∈[0,2]上恒成立,求實(shí)數(shù)a的取值范圍;
(3)若a為常數(shù),且函數(shù)f(x)在區(qū)間[0,2]上存在零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,且當(dāng)x∈[1,2]時(shí),f(x)=﹣2x+2,若函數(shù)y=f(x)﹣loga(|x|+1)恰好有8個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)已知函數(shù)f(x)=2x+ (x>0),證明函數(shù)f(x)在(0, )上單調(diào)遞減,并寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)記函數(shù)g(x)=a|x|+2ax(a>1) ①若a=4,解關(guān)于x的方程g(x)=3;
②若x∈[﹣1,+∞),求函數(shù)g(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案