已知圓C:x2+y2-2x-2ay+a2-24=0(a∈R)的圓心在直線2x-y=0上,求圓C與直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R)相交弦長的最小值.
考點:直線與圓相交的性質(zhì)
專題:計算題,直線與圓
分析:求出圓心為(1,2),半徑為5,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R)恒過(3,1),即可求出圓C與直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R)相交弦長的最小值.
解答: 解:圓C:x2+y2-2x-2ay+a2-24=0(a∈R)的圓心坐標為(1,a),代入直線2x-y=0,可得2-a=0,即a=2,圓心為(1,2),半徑為5.
直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R)可化為m(2x+y-7)+(x+y-4)=0,
2x+y-7=0
x+y-4=0
可得x=3,y=1,
(3,1)與(1,2)的距離為
4+1
=
5

∴圓C與直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R)相交弦長的最小值為2
25-5
=4
5
點評:本題考查直線與圓相交的性質(zhì),考查直線恒過定點,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設正項等比數(shù)列{an},已知a2=2,a3a4a5=29
(1)求首項a1和公比q的值;
(2)若數(shù)列{bn}滿足bn=
1
n
[lga1+lga2+…lgan-1+lg(kan)],問是否存在正數(shù)k,使數(shù)列{bn}為等差數(shù)列?若存在,求k的值.若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足
y≥x
x+y≤2
x≥a
,且目標函數(shù)z=2x+y的最大值為M,最小值為m,若M=4m,則實數(shù)a的值為( 。
A、1
B、
1
3
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算定積分:
(1)
1
0
e2xdx
;
(2)
π
4
π
6
cos2xdx
;
(3)
3
1
2xdx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1、F2是雙曲線x2-
y2
3
=1
的兩個焦點,是雙曲線上的一點,且3|PF1|=4|PF2|,則△PF1F2的面積等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某商場在促銷期間規(guī)定:商場內(nèi)所有商品按標價的80%出售;同時,當顧客在該商場內(nèi)消費滿一定金額后,按如下方案獲得相應金額的獎券:
消費金額(元)的范圍[188,388](388,588](588,888](888,1188]
獲得獎券的金額(元)285888128
根據(jù)上述促銷方法,顧客在該商場購物可以獲得雙重優(yōu)惠.例如:購買標價為400元的商品,則消費金額為320元,然后還能獲得對應的獎券金額為28元.于是,該顧客獲得的優(yōu)惠額為:400×0.2+28=108元.設購買商品得到的優(yōu)惠率=
購買商品獲得的優(yōu)惠額
商品的標價

試問:
(1)購買一件標價為1000元的商品,顧客得到的優(yōu)惠率是多少?
(2)當商品的標價為[100,600]元時,試寫出顧客得到的優(yōu)惠率y關于標價x元之間的函數(shù)關系式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某果園中有60棵橘子樹,平均每棵樹結200斤橘子.由于市場行情較好,園主準備多種一些橘子樹以提高產(chǎn)量,但是若多種樹,就會影響果樹之間的距離,每棵果樹接受到的陽光就會減少,導致每棵果樹的產(chǎn)量降低,經(jīng)驗表明:在現(xiàn)有情況下,每多種一棵果樹,平均每棵果樹都會少結2斤橘子.
(1)如果園主增加種植了10棵橘子樹,則總產(chǎn)量增加了多少?
(2)求果園總產(chǎn)量y(斤)與增加種植的橘子樹數(shù)目x(棵)之間的函數(shù)關系式.
(3)增加種植多少棵橘子樹可以使得果園的總產(chǎn)量最大?最大總產(chǎn)量是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有甲、乙兩城,甲城位于一直線河岸,乙城離岸40km,乙城到河岸的垂足B與甲城相距50km,兩城要在此河邊合舍一個水廠取水,從水廠到甲城和乙城的水管費用分別為每千米500元和我700元,則水廠甲城的距離為
 
千米,才能使水管費用最省?

查看答案和解析>>

同步練習冊答案