【答案】
分析:(Ⅰ)由題意及圖可得,先由條件證得AD⊥BD及AE⊥BD,再由線面垂直的判定定理即可證得線面垂直;
(II)解法一:由(I)知,AD⊥BD,可得出AC⊥BC,結(jié)合FC⊥平面ABCD,知CA,CA,CF兩兩垂直,因此可以C為坐標(biāo)原點(diǎn),分別以CA,CB,CF所在的直線為X軸,Y軸,Z軸建立如圖的空間直角坐標(biāo)系,設(shè)CB=1,表示出各點(diǎn)的坐標(biāo),再求出兩個平面的法向量的坐標(biāo),由公式求出二面角F-BD-C的余弦值即可;
解法二:取BD的中點(diǎn)G,連接CG,F(xiàn)G,由于 CB=CD,因此CG⊥BD,又FC⊥平面ABCD,BD?平面ABCD,可證明出∠FGC為二面角F-BD-C的平面角,再解三角形求出二面角F-BD-C的余弦值.
解答:(I)證明:因?yàn)樗倪呅蜛BCD是等腰梯形,AB∥CD,∠DAB=60°.所以∠ADC=∠BCD=120°.又CB=CD,
所以∠CDB=30°,因此,∠ADB=90°,AD⊥BD,
又AE⊥BD且,AE∩AD=A,AE,AD?平面AED,
所以BD⊥平面AED;
(II)解法一:由(I)知,AD⊥BD,所以AC⊥BC,
又FC⊥平面ABCD,因此CA,CA,CF兩兩垂直,以C為坐標(biāo)原點(diǎn),分別以CA,CB,CF所在的直線為X軸,Y軸,Z軸建立如圖的空間直角坐標(biāo)系,
不妨設(shè)CB=1,則C(0,0,0),B(0,1,0),D(
,-
,0),F(xiàn)(0,0,1),因此
=(
,-
,0),
=(0,-1,1)
設(shè)平面BDF的一個法向量為
=(x,y,z),則
•
=0,
•
=0
所以x=
y=
z,取z=1,則
=(
,1,1),
由于
=(0,0,1)是平面BDC的一個法向量,
則cos<
,
>=
=
=
,所以二面角F-BD-C的余弦值為
解法二:取BD的中點(diǎn)G,連接CG,F(xiàn)G,由于 CB=CD,因此CG⊥BD,又FC⊥平面ABCD,BD?平面ABCD,
所以FC⊥BD,由于FC∩CG=C,F(xiàn)C,CG?平面FCG.
所以BD⊥平面FCG.故BD⊥FG,所以∠FGC為二面角F-BD-C的平面角,
在等腰三角形BCD中,由于∠BCD=120°,
因此CG=
CB,又CB=CF,
所以GF=
=
CG,
故cos∠FGC=
,
所以二面角F-BD-C的余弦值為
點(diǎn)評:本題考查線面垂直的證明與二面角的余弦值的求法,解題的關(guān)鍵是熟練掌握線面垂直的判定定理及二面角的兩種求法-向量法與幾何法,本題是高中數(shù)學(xué)的典型題,也是高考中的熱點(diǎn)題型,尤其是利用空間向量解決立體幾何問題是近幾年高考的必考題,學(xué)習(xí)時要好好把握向量法的解題規(guī)律.