分析 先寫(xiě)出使兩根都大于1的充要條件是使兩根都大于1的充要條件是:$\left\{\begin{array}{l}{(2k-1)^{2}-4{k}^{2}≥0}\\{({x}_{1}-1)+({x}_{2}-1)>0}\\{({x}_{1}-1)({x}_{2}-1)>0}\end{array}\right.$;再結(jié)合韋達(dá)定理解不等式即可得到結(jié)論.
解答 解:方程x2+2kx+k2=x,即方程x2+(2k-1)x+k2=0,
設(shè)方程的兩根為x1,x2,
∴x1+x2=1-2k,x1•x2=k2,
則使兩根都大于1的充要條件是:$\left\{\begin{array}{l}{(2k-1)^{2}-4{k}^{2}≥0}\\{({x}_{1}-1)+({x}_{2}-1)>0}\\{({x}_{1}-1)({x}_{2}-1)>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{4k-1≤0}\\{1-2k-2≤0}\\{{k}^{2}-1+2k+1≥0}\end{array}\right.$,
解得k≤-2,
所以方程x2+(k-2)x+k2+1=0有兩個(gè)大于1的根的充要條件是k≤-2,
它的一個(gè)必要不充分條件是k≤-3.
點(diǎn)評(píng) 本題主要考查一元二次方程的根的分布與系數(shù)的關(guān)系.解決這一類型題目一般都要結(jié)合韋達(dá)定理,以及充要條件和必要條件的問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2017屆廣東華南師大附中高三綜合測(cè)試一數(shù)學(xué)(文)試卷(解析版) 題型:填空題
已知,若,則實(shí)數(shù)的值是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“?x∈R,ex>0”的否定是“?x∈R,ex>0” | |
B. | 命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題 | |
C. | “x2+2x≥ax在x∈[1,2]上恒成立”?“對(duì)于x∈[1,2],有(x2+2x)min≥(ax)max” | |
D. | 命題“若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個(gè)零點(diǎn)”的逆命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}\overrightarrow{a}+\frac{1}{4}\overrightarrow$ | B. | $\frac{1}{2}\overrightarrow{a}-\frac{1}{4}\overrightarrow$ | C. | $\frac{1}{2}\overrightarrow{a}+\frac{1}{4}\overrightarrow$ | D. | -$\frac{1}{2}\overrightarrow{a}-\frac{1}{4}\overrightarrow$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com