某校從8名教師中選派4名教師同時(shí)去4個(gè)邊遠(yuǎn)地區(qū)支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,則不同的選派方案共有    種.
【答案】分析:題目對(duì)于元素有限制,注意先安排有限制條件的元素,甲和乙不同去,甲和丙只能同去或同不去,可以分情況討論,甲、丙同去,則乙不去;甲、丙同不去,乙去;甲、乙、丙都不去,根據(jù)分類計(jì)數(shù)原理得到結(jié)果.
解答:解:某校從8名教師中選派4名教師同時(shí)去4個(gè)邊遠(yuǎn)地區(qū)支教(每地1人),
其中甲和乙不同去,甲和丙只能同去或同不去,可以分情況討論,
①甲、丙同去,則乙不去,有C52•A44=240種選法;
②甲、丙同不去,乙去,有C53•A44=240種選法;
③甲、乙、丙都不去,有A54=120種選法,
共有240+240+120=600種不同的選派方案.
故答案為:600.
點(diǎn)評(píng):應(yīng)用分類加法計(jì)數(shù)原理,首先確定分類標(biāo)準(zhǔn),其次滿足完成這件事的任何一種方法必屬某一類,并且分別屬于不同的兩類的方法都是不同的方法,即做到不重不漏.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、某校從8名教師中選派4名教師同時(shí)去4個(gè)邊遠(yuǎn)地區(qū)支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,則不同的選派方案共有
600
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、某校從8名教師中選派4名教師同時(shí)去4個(gè)邊遠(yuǎn)地區(qū)支教(每地1人),其中甲和乙不同去,則不同的選派方案共有
1320
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校從8名教師中選派4名教師同時(shí)去4個(gè)邊遠(yuǎn)地區(qū)支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,則不同的選派方案共有
600
600
種(數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校從8名教師中選派4名教師同時(shí)去4個(gè)邊遠(yuǎn)地區(qū)支教(每地1人),其中甲和乙不同去,則不同的選派方案共有( 。┓N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校從8名教師中選派4名教師同時(shí)去4個(gè)邊遠(yuǎn)地區(qū)支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,則不同的選派方案共有( 。┓N.
A、150B、300C、600D、900

查看答案和解析>>

同步練習(xí)冊(cè)答案