分析 (Ⅰ)利用二倍角的余弦公式化簡函數(shù)的解析式,再利用y=Asin(ωx+φ)的周期,求得ω的值;結(jié)合$f(\frac{π}{8})=\frac{1}{4}$求出φ的值即可;
(Ⅱ)根據(jù)余弦函數(shù)的單調(diào)性求出f(x)的單調(diào)區(qū)間,從而求出函數(shù)的最大值和最小值即可.
解答 解:(Ⅰ)$f(x)={cos^2}(ωx+φ)-\frac{1}{2}=\frac{1}{2}[{1+cos(2ωx+2φ)}]-\frac{1}{2}=\frac{1}{2}cos(2ωx+2φ)$…(2分)
∵f(x)的最小正周期為π,∴$\frac{2π}{2ω}=π$,∴ω=1.…(3分)
∵$f(\frac{π}{8})=\frac{1}{4}$,∴$cos(\frac{π}{4}+2ϕ)=\frac{1}{2}$,
∵$0<ϕ<\frac{π}{2}$,∴$\frac{π}{4}<\frac{π}{4}+2ϕ<\frac{5}{4}π$,
∴$\frac{π}{4}+2ϕ=\frac{π}{3}$,∴$ϕ=\frac{π}{24}$…(6分)
(Ⅱ)∵$\frac{π}{24}≤x≤\frac{13π}{24}$∴$\frac{π}{6}≤2x+\frac{π}{12}≤\frac{7π}{6}$,
∴$-1≤cos(2x+\frac{π}{12})≤\frac{{\sqrt{3}}}{2}$,即 $-\frac{1}{2}≤f(x)≤\frac{{\sqrt{3}}}{4}$…(8分)
∴當(dāng)$2x+\frac{π}{12}=\frac{π}{6}$即$x=\frac{π}{24}$時(shí),f(x)取得最大值$\frac{{\sqrt{3}}}{4}$…(10分)
當(dāng)$2x+\frac{π}{12}=π$即$x=\frac{11π}{24}$時(shí),f(x)取得最小值$-\frac{1}{2}$…(12分)
點(diǎn)評 本題主要考查二倍角的余弦公式,余弦函數(shù)的周期性,兩角差的余弦公式以及函數(shù)的最值問題,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2k | B. | 0 | C. | 2k | D. | 4k |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k) | 0.10 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com