在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A、B、C三點(diǎn)滿足
OC
=
1
3
OA
+
2
3
OB

(1)求證:A,B,C三點(diǎn)共線;
(2)若A(1,cosx),B(1+sinx,cosx),x∈[0,
π
2
]
f(x)=
OA
OC
-(2m2+
2
3
)•|
AB
|
的最小值為
1
2
,求實(shí)數(shù)m的值.
分析:(1)由條件求得
AB
 和
AC
,可得
AC
=
2
3
AB
,從而得到
AC
AB
,即A,B,C三點(diǎn)共線.
(2)先求出
AB
=(sinx,0)
,從而求得f(x)=1+sinx+cos2x-(2m2+
2
3
)sinx
,由x的范圍求得sinx∈[0,1],利用二次函數(shù)的性質(zhì)求出f(x)的最小值,即可求得實(shí)數(shù)m的值.
解答:解:∵(1)
OC
=
1
3
OA
+
2
3
OB
,∴
AC
=
OC
-
OA
=-
2
3
OA
+
2
3
OB
,
AB
=
OB
-
OA
,…(1分)
AC
=
2
3
AB
,…(4分)∴
AC
AB
,即A,B,C三點(diǎn)共線.  …(5分)
(2)由A(1,cosx),B(1+sinx,cosx),x∈[0,
π
2
]
,…(6分)
AB
=(sinx,0)
,∴|
AB
|=
sin2x
=sinx
,…(7分)
OC
=
1
3
OA
+
2
3
OB
=(1+
2
3
sinx,cosx),
從而 f(x)=
OA
OC
-(2m2+
2
3
)•|
AB
|=1+
2
3
sinx+cos2x-(2m2+
2
3
)sinx
 
=-sin2x-2m2 sinx+2=-(sinx+m22+m4+2.…(10分)
x∈[0,
π
2
]
,則t=sinx∈[0,1],f(x)=g(t)=-(t+m22+m4+2.
由于-m2≤0,∴g(t)=-(t+m22+m4+2 在[0,1]上是減函數(shù),
當(dāng)t=1,即x=
π
2
時(shí),f(x)=g(t)取得最小值為-(1+m2)2+m4+2=
1
2
,解得m=±
1
2
,
綜上,m=±
1
2
. …(14分)
點(diǎn)評(píng):本題主要考查兩個(gè)向量共線的條件,兩個(gè)向量的數(shù)量積公式的應(yīng)用,兩個(gè)向量的坐標(biāo)形式的運(yùn)算,二次函數(shù)的性質(zhì)應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱(chēng)點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫(xiě)出所有正確命題的編號(hào)).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)
②如果k與b都是無(wú)理數(shù),則直線y=kx+b不經(jīng)過(guò)任何整點(diǎn)
③直線l經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過(guò)兩個(gè)不同的整點(diǎn)
④直線y=kx+b經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱(chēng)的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案