函數(shù)f(x)=ln(-x2+3x+4)的單調(diào)增區(qū)間是( )
A.[,+∞)
B.(-∞,+
C.(-1,
D.(,4)
【答案】分析:由題意可得,本題即求t=-x2+3x+4>0時(shí)的增區(qū)間,根據(jù)二次函數(shù)的性質(zhì)可得結(jié)論.
解答:解:由于函數(shù)y=lnx在其定義域內(nèi)是增函數(shù),故函數(shù)y=ln(-x2+3x+4)的單調(diào)遞增區(qū)間即為-x2+3x+4的大于零時(shí)的增區(qū)間.
由t=-x2+3x+4>0可得-1<x<4,其對稱軸x=
∴大于零時(shí)的增區(qū)間為(-1,),
故選C
點(diǎn)評:本題主要考查對數(shù)函數(shù)的單調(diào)性和特殊點(diǎn),對數(shù)函數(shù)的定義域,復(fù)合函數(shù)的單調(diào)性規(guī)律,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(ax+1)+x3-x2-ax.
(Ⅰ)若x=
2
3
為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(Ⅱ)若y=f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)若a=-1使,方程f(1-x)-(1-x)3=
b
x
有實(shí)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(ex+a)(a為常數(shù))是實(shí)數(shù)集R上的奇函數(shù).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)討論關(guān)于x的方程lnx=f(x)(x2-2ex+m)的根的個(gè)數(shù).
(Ⅲ)證明:
ln(22-1)
22
+
ln(32-1)
32
+…+
ln(n2-1)
n2
2n2-n-1
2(n+1)
(n∈N*,n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ln(aex-x-3)的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍是
(e2,+∞)
(e2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ln(x-1)的定義域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2005•武漢模擬)已知函數(shù)f(x)=ln(x-2)-
x22a
(a為常數(shù)且a≠0)
(1)求導(dǎo)數(shù)f′(x);
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案