【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學(xué)期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ-3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查,試用所學(xué)知識(shí)說明上述監(jiān)控生產(chǎn)過程方法的合理性;
附:若隨機(jī)變量Z服從正態(tài)分布N(μ,),則P(μ-3σ<Z<μ+3σ)=0.9974,,.
【答案】(1)P(X≥1)=0.0408,E(X)=0.0416(2)上述監(jiān)控生產(chǎn)過程的方法是合理的,詳見解析
【解析】
(1)通過可求出,利用二項(xiàng)分布的期望公式計(jì)算可得結(jié)果。(2)由(1)知落在(μ-3σ,μ+3σ)之外為小概率事件可知該監(jiān)控生產(chǎn)過程方法合理。
解:(1)由題可知尺寸落在(μ-3σ,μ+3σ)之內(nèi)的概率為0.9974,
則落在(μ-3σ,μ+3σ)之外的概率為1-0.9974=0.0026,
因?yàn)?/span>,
所以P(X≥1)=1-P(X=0)=0.0408,
又因?yàn)?/span>X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;
(2)如果生產(chǎn)狀態(tài)正常,一個(gè)零件尺寸在之外的概率只有0.0026一天內(nèi)抽取的16個(gè)零件中,出現(xiàn)尺寸在之外的零件的概率只有0.0408,發(fā)生的概率很。虼艘坏┌l(fā)生這種狀況,就有理由認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查,可見上述監(jiān)控生產(chǎn)過程的方法是合理的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測(cè)數(shù)據(jù)如下表:
溫度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
產(chǎn)卵數(shù)y/個(gè) | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計(jì)算得: , , , ,
,線性回歸模型的殘差平方和,e8.0605≈3167,其中xi, yi分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用線性回歸模型,求y關(guān)于x的回歸方程=x+(精確到0.1);
(Ⅱ)若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.
( i )試與(Ⅰ)中的回歸模型相比,用R2說明哪種模型的擬合效果更好.
( ii )用擬合效果好的模型預(yù)測(cè)溫度為35C時(shí)該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).
附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計(jì)為
=;相關(guān)指數(shù)R2=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)已知函數(shù),求的極值;
(2)已知函數(shù),若存在實(shí)數(shù),使得當(dāng)時(shí),函數(shù)的最大值為,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手機(jī)廠商推出一款6寸大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行評(píng)分,評(píng)分的頻數(shù)分布表如下:
女性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 20 | 40 | 80 | 50 | 10 | |
男性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
(1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評(píng)分的波動(dòng)大。ú挥(jì)算具體值,給出結(jié)論即可);
(2)把評(píng)分不低于70分的用戶稱為“評(píng)分良好用戶”,能否有的把握認(rèn)為“評(píng)分良好用戶”與性別有關(guān)?
參考附表:
參考公式,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年上海國(guó)際青少年足球邀請(qǐng)賽將在6月下旬舉行.一體育機(jī)構(gòu)對(duì)某高中一年級(jí)750名男生,600名女生采用分層抽樣的方法抽取45名學(xué)生對(duì)足球進(jìn)行興趣調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下所示:
表1:男生
結(jié)果 | 有興趣 | 無所謂 | 無興趣 |
人數(shù) | 2 | 3 |
表2:女生
結(jié)果 | 有興趣 | 無所謂 | 無興趣 |
人數(shù) | 12 | 2 |
(1)求,的值;
(2)運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:請(qǐng)你填寫列聯(lián)表,并判斷是否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為非“有興趣”與性別有關(guān)系?
男生 | 女生 | 總計(jì) | |
有興趣 | |||
非有興趣 | |||
總計(jì) |
(3)從45人所有無興趣的學(xué)生中隨機(jī)選取2人,求所選2人中至少有一個(gè)女生的概率.
附:,.
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)購平臺(tái)為了解某市居民在該平臺(tái)的消費(fèi)情況,從該市使用其平臺(tái)且每周平均消費(fèi)額超過100元的人員中隨機(jī)抽取了100名,并繪制右圖所示頻率分布直方圖,已知之間三組的人數(shù)可構(gòu)成等差數(shù)列.
(1)求的值;
(2)分析人員對(duì)100名調(diào)查對(duì)象的性別進(jìn)行統(tǒng)計(jì)發(fā)現(xiàn),消費(fèi)金額不低于300元的男性有20人,低于300元的男性有25人,根據(jù)統(tǒng)計(jì)數(shù)據(jù)完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為消費(fèi)金額與性別有關(guān)?
(3)分析人員對(duì)抽取對(duì)象每周的消費(fèi)金額與年齡進(jìn)一步分析,發(fā)現(xiàn)他們線性相關(guān),得到回歸方程.已知100名使用者的平均年齡為38歲,試判斷一名年齡為25歲的年輕人每周的平均消費(fèi)金額為多少.(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值代替)
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是函數(shù)的導(dǎo)函數(shù),已知,且,則使得成立的的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)棱垂直于底面,, 為的中點(diǎn),過的平面與交于點(diǎn).
(1)求證:點(diǎn)為的中點(diǎn);
(2)四邊形是什么平面圖形?說明理由,并求其面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n為正整數(shù),集合A=.對(duì)于集合A中的任意元素和,記
M()=.
(Ⅰ)當(dāng)n=3時(shí),若, ,求M()和M()的值;
(Ⅱ)當(dāng)n=4時(shí),設(shè)B是A的子集,且滿足:對(duì)于B中的任意元素,當(dāng)相同時(shí),M()是奇數(shù);當(dāng)不同時(shí),M()是偶數(shù).求集合B中元素個(gè)數(shù)的最大值;
(Ⅲ)給定不小于2的n,設(shè)B是A的子集,且滿足:對(duì)于B中的任意兩個(gè)不同的元素,
M()=0.寫出一個(gè)集合B,使其元素個(gè)數(shù)最多,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com