3.若冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)$(4,\frac{1}{2})$,則f(9)=$\frac{1}{3}$.

分析 設(shè)出冪函數(shù)f(x)=xα,α為常數(shù),把點(diǎn)(4,$\frac{1}{2}$)代入,求出待定系數(shù)α的值,得到冪函數(shù)的解析式,進(jìn)而可求f(9)的值.

解答 解:∵冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(4,$\frac{1}{2}$),
設(shè)冪函數(shù)f(x)=xα,α為常數(shù),
∴4α=$\frac{1}{2}$,∴α=-$\frac{1}{2}$,故 f(x)=${x}^{-\frac{1}{2}}$,
∴f(9)=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.

點(diǎn)評 本題考查冪函數(shù)的定義,用待定系數(shù)法求函數(shù)的解析式,以及求函數(shù)值的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的頂點(diǎn)B到左焦點(diǎn)F1的距離為2,離心率e=$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓C的方程;
(2)若點(diǎn)A為橢圓C的右頂點(diǎn),過點(diǎn)A作互相垂直的兩條射線,與橢圓C分別交于不同的兩點(diǎn)M,N(M,N不與左、右頂點(diǎn)重合),試判斷直線MN是否過定點(diǎn),若過定點(diǎn),求出該定點(diǎn)的坐標(biāo); 若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.非零實(shí)數(shù)a,b,c,
①若a,b,c成等差數(shù)列,則$\frac{1}{a},\frac{1},\frac{1}{c}$也一定成等差數(shù)列;
②若a,b,c成等差數(shù)列,則a2,b2,c2也一定成等差數(shù)列;
③若a,b,c成等比數(shù)列,則$\frac{1}{a},\frac{1},\frac{1}{c}$也一定成等比數(shù)列;
④若a,b,c成等比數(shù)列,則a2,b2,c2也一定成等比數(shù)列.
上述結(jié)論中,正確的序號為③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.定義在R上的奇函數(shù)f(x)滿足:對任意的x1,x2∈(-∞,0),(x1≠x2),都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則下列結(jié)論正確的是( 。
A.f(log3π)>f(log2$\sqrt{3}$)>f(log3$\sqrt{2}$)B.f(log2$\sqrt{3}$)>f(log3$\sqrt{2}$)>f(log3π)
C.f(log3$\sqrt{2}$)>f(log2$\sqrt{3}$)>f(log3π)D.f(log2$\sqrt{3}$)>f(log3π)>f(log3$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=Asin($\frac{π}{6}$x+φ)(A>0,0<φ<$\frac{π}{2}})$)的部分圖象如圖所示,P,Q分別為該圖象的最高點(diǎn)和最低點(diǎn),點(diǎn)P的坐標(biāo)為(2,A),點(diǎn)R的坐標(biāo)為(2,0).若∠PRQ=$\frac{2π}{3}$,則y=f(x)的最大值是2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知全集U=R,集合A=$\{x|\frac{x-1}{x-4}≤0\}$,集合B為函數(shù)g(x)=3x+a的值域.
(1)若a=2,求A∪B和A∩(CUB);
(2)若A∪B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=2x+1,若f(a)<3,則實(shí)數(shù)a的取值范圍為(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.
已知函數(shù)f(x)=${(\frac{1}{4})^x}$+$a•{(\frac{1}{2})^x}$-1,g(x)=$\frac{{1-m•{2^x}}}{{1+m•{2^x}}}$.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域,并判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)①當(dāng)m=1時(shí),判斷函數(shù)g(x)的奇偶性并證明,并判斷g(x)是否有上界,并說明理由;
②若m∈$(0,\frac{1}{2})$,函數(shù)g(x)在[0,1]上的上界是G,求G的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A,B兩點(diǎn),點(diǎn)O是原點(diǎn),若A點(diǎn)到準(zhǔn)線的距離為3,則△AOB的面積為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案