如圖,設橢圓
x2
a2
+
y2
b2
=1(a>b>0)長軸的右端點為A,短軸端點分別為B、C,另有拋物線y=x2+b.
(Ⅰ)若拋物線上存在點D,使四邊形ABCD為菱形,求橢圓的方程;
(Ⅱ)若a=2,過點B作拋物線的切線,切點為P,直線PB與橢圓相交于另一點Q,求
|PQ|
|QB|
的取值范圍.
(Ⅰ)由四邊形ABCD是菱形,得D(a,a2+b),
a2+b=2b
a2+b2
=2b
,解得a=
3
3
b=
1
3
,
所以橢圓方程為3x2+9y2=1.
(Ⅱ)不妨設P(t,t2+b)(t≠0),
因為y'|x=t=2x|x=t=2t,
所以PQ的方程為y=2t(x-t)+t2+b,即y=2tx-t2+b.
又因為直線PQ過點B,所以-t2+b=-b,即b=
t2
2

所以PQ的方程為y=2tx-
t2
2

聯(lián)立方程組
y=2tx-
t2
2
x2
4
+
4y2
t4
=1
,消去y,得(t2+64)x2-32tx=0.
所以點Q的橫坐標為xQ=
32t
t2+64

所以
|PQ|
|QB|
=
xP-xQ
xQ-xB2
=
t2
32
+1

又t2=2b∈(0,4),所以
|PQ|
|QB|
的取值范圍為(1,
9
8
)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,CD是∠ACB的角平分線,△ADC的外接圓交BC于點E,AB=2AC
(1)求證:BE=2AD;
(2)當AC=3,EC=6時,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓:
x2
a2
+
y2
b2
=1(a>b>0)

(Ⅰ)若橢圓的一個焦點到長軸的兩個端點的距離分別為2+
3
2-
3
,求橢圓的方程;
(Ⅱ)如圖,過坐標原點O任作兩條互相垂直的直線與橢圓分別交于P、Q和R、S四點.設原點O到四邊形PRQS某一邊的距離為d,試求:當d=1時
1
a2
+
1
b2
的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

平面直角坐標系xOy中,過橢圓M:
x2
a2
+
y2
b2
=1
(a>b>0)右焦點的直線x+y-
3
=0交M于A,B兩點,P為AB的中點,且OP的斜率為
1
2

(Ⅰ)求M的方程
(Ⅱ)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
a
=(x,0)
,
b
=(1,y)
,且(
a
+
3
b
)⊥(
a
-
3
b
)

(1)求點P(x,y)的軌跡C的方程,且畫出軌跡C的草圖;
(2)若直線l:y=kx+m(k≠0)與上述曲線C交于不同的兩點A、B,求實數(shù)k和m所滿足的條件;
(3)在(2)的條件下,若另有定點D(0,-1),使|AD|=|BD|,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xoy中,F(xiàn)是拋物線C:y2=2px(p>0)的焦點,圓Q過O點與F點,且圓心Q到拋物線C的準線的距離為
3
2

(1)求拋物線C的方程;
(2)過F作傾斜角為60°的直線L,交曲線C于A,B兩點,求△OAB的面積;
(3)已知拋物線上一點M(4,4),過點M作拋物線的兩條弦MD和ME,且MD⊥ME,判斷:直線DE是否過定點?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過橢圓
x2
2
+y2=1
的左焦點F1的直線l交橢圓于A、B兩點.
(1)求
AO
AF1
的范圍;
(2)若
OA
OB
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,點F為橢圓的右焦點,點A、B分別為橢圓的左、右頂點,點M為橢圓的上頂點,且滿足
MF
FB
=
2
-1

(1)求橢圓C的方程;
(2)是否存在直線l,當直線l交橢圓于P、Q兩點時,使點F恰為△PQM的垂心.若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,中,,以為直徑的半圓分別交于點,若,則=_______.

查看答案和解析>>

同步練習冊答案