【題目】如圖為正方體ABCD-A1B1C1D1,動點M從B1點出發(fā),在正方體表面沿逆時針方向運動一周后,再回到B1的運動過程中,點M與平面A1DC1的距離保持不變,運動的路程x與l=MA1+MC1+MD之間滿足函數(shù)關(guān)系l=f(x),則此函數(shù)圖象大致是( )
A. B.
C. D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,函數(shù)F(x)=f(x)﹣b有四個不同的零點x1,x2,x3,x4,且滿足:x1<x2<x3<x4,則的取值范圍是( )
A.[,+∞)B.(3,]C.[3,+∞)D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)).以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;
(2)已知與直線平行的直線過點,且與曲線交于兩點,試求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(),過點()的直線與交于、兩點.
(1)若,求證:是定值(是坐標(biāo)原點);
(2)若(是確定的常數(shù)),求證:直線過定點,并求出此定點坐標(biāo);
(3)若的斜率為1,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人玩猜數(shù)字游戲,先由甲心中任想一個數(shù)字,記為,再由乙猜甲剛才想的數(shù)字把乙猜的數(shù)字記為,且,若,則稱甲乙“心有靈犀”,現(xiàn)任意找兩個人玩這個游戲,得出他們“心有靈犀”的概率為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩動圓和(),把它們的公共點的軌跡記為曲線,若曲線與軸的正半軸的交點為,且曲線上的相異兩點滿足:.
(1)求曲線的軌跡方程;
(2)證明直線恒經(jīng)過一定點,并求此定點的坐標(biāo);
(3)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若有窮數(shù)列()滿足:①;②.則稱該數(shù)列為“階非凡數(shù)列”
(1)分別寫出一個單調(diào)遞增的“階非凡數(shù)列”和一個單調(diào)遞減的“階非凡數(shù)列”;
(2)設(shè),若“階非凡數(shù)列”是等差數(shù)列,求其通項公式;
(3)記“階非凡數(shù)列”的前項的和為,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元,為了增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出()名員工從事第三產(chǎn)業(yè),調(diào)整后這名員工他們平均每人創(chuàng)造利潤為萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高.
(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調(diào)整多少名員工從事第三產(chǎn)業(yè)?
(2)設(shè),若調(diào)整出的員工創(chuàng)造出的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)討論函數(shù)的零點的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com