已知?jiǎng)訄AP過(guò)點(diǎn)N(2,0)并且與圓M:(x+2)2+y2=4相外切,動(dòng)圓圓心P的軌跡為W,過(guò)點(diǎn)N的直線(xiàn)l與軌跡W交于A、B兩點(diǎn).
(1)求軌跡W的方程;
(2)若2
AN
=
NB
,求直線(xiàn)l的方程;
(3)對(duì)于l的任意一確定的位置,在直線(xiàn)x=
1
2
上是否存在一點(diǎn)Q,使得
QA
QB
=0,并說(shuō)明理由.
分析:(1)根據(jù)題意可推斷出|PM|-|PN|=2<|MN|=4進(jìn)而利用雙曲線(xiàn)的定義可知點(diǎn)P的軌跡W是以M、N為焦點(diǎn)的雙曲線(xiàn)的右支,設(shè)出其標(biāo)準(zhǔn)方程,依題意求得a和c,則b可求,進(jìn)而求得雙曲線(xiàn)的方程.
(2)設(shè)出l的方程與雙曲線(xiàn)方程聯(lián)立,進(jìn)而利用2
AN
=
NB
求得x2和x1的關(guān)系式,代入方程入①②求得k,則直線(xiàn)的方程可得.
(3)問(wèn)題可轉(zhuǎn)化為判斷以AB為直徑的圓是否與直線(xiàn)x=
1
2
有公共點(diǎn),先看直線(xiàn)l的斜率不存在,則以AB為直徑的圓為(x-2)2+y2=9,可知其與直線(xiàn)x=
1
2
相交;再看斜率存在時(shí)設(shè)出直線(xiàn)的方程,利用焦點(diǎn)坐標(biāo)和離心率求得|AB|的表達(dá)式,設(shè)以AB為直徑的圓的圓心為S,點(diǎn)S到直徑x=
1
2
的距離為d,則d可求,d-
|AB|
2
判斷出結(jié)果小于0,推斷出d<
|AB|
2
,進(jìn)而可知直線(xiàn)x=
1
2
與圓S相交,最后綜合可得答案.
解答:解:(1)依題意可知|PM|=|PN|+2∴|PM|-|PN|=2<|MN|=4,
∴點(diǎn)P的軌跡W是以M、N為焦點(diǎn)的雙曲線(xiàn)的右支,設(shè)其方程為
x2
a2
-
y2
b2
=1(a>0,b>0)則a=1,c=2,
∴b2=c2-a2=3,∴軌跡W的方程為x2-
y2
3
=1,(x≥1).
(2)當(dāng)l的斜率不存在時(shí),顯然不滿(mǎn)足2
AN
=
NB
,故l的斜率存在,設(shè)l的方程為y=k(x-2),
y=k(x-2)
x2-
y2
3
=1
得(3-k2)x2+4k2x-4k2-3=0,又設(shè)A(x1,y1),B(x2,y2),則
x1+x2=
4k2
k2-3
>0①
x1x2=
4k2+3
k2-3
>0②
△=16k4+4(3-k2)(4k2+3)>0③

由①②③解得k2>3,∵2
AN
=
NB
∴2(2-x1,-y1)=(x2-2,y2
∴x2=6-2x1代入①②得
4k2
k2-3
=6-x1,
4k2+3
k2-3
=x1(6-2x1
消去x1得k2=35,即k=±
35
,故所求直線(xiàn)l的方程為:y=±
35
(x-2);
(3)問(wèn)題等價(jià)于判斷以AB為直徑的圓是否與直線(xiàn)x=
1
2
有公共點(diǎn)
若直線(xiàn)l的斜率不存在,則以AB為直徑的圓為(x-2)2+y2=9,可知其與直線(xiàn)x=
1
2
相交;若直線(xiàn)l的斜率存在,則設(shè)直線(xiàn)l的方程為y=k(x-2),A(x1,y1),B(x2,y2
由(2)知k2>3且x1+x2=
4k2
k2-3
,又N(2,0)為雙曲線(xiàn)的右焦點(diǎn),雙曲線(xiàn)的離心率e=2,
則|AB|=e(x1+x2)-2a=2×
4k2
k2-3
-2=
6(k2+1)
k2-3

設(shè)以AB為直徑的圓的圓心為S,點(diǎn)S到直徑x=
1
2
的距離為d,則d=
x1+x2
2
-
1
2
=
2k2
k2-3
-
1
2
=
3(k2+1)
2(k2-3)

∴d-
|AB|
2
=
3(k2+1)
2(k2-3)
-
3(k2+1)
k2-3
=-
3(k2+1)
2(k2-3)

∵k2>3∴d-
|AB|
2
<0即d<
|AB|
2
,即直線(xiàn)x=
1
2
與圓S相交.
綜上所述,以線(xiàn)段AB為直徑的圓與直線(xiàn)x=
1
2
相交;
故對(duì)于l的任意一確定的位置,與直線(xiàn)x=
1
2
上存在一點(diǎn)Q(實(shí)際上存在兩點(diǎn))使得
QA
QB
=0
點(diǎn)評(píng):本題主要考查了直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題.考查了學(xué)生分析問(wèn)題和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:0103 模擬題 題型:解答題

已知?jiǎng)訄AP過(guò)點(diǎn)N(2,0)并且與圓M:(x+2)2+y2=4相外切,動(dòng)圓圓心P的軌跡為W,過(guò)點(diǎn)N的直線(xiàn)與軌跡W交于A、B兩點(diǎn)。
(Ⅰ)求軌跡W的方程;
(Ⅱ)若,求直線(xiàn)的方程;
(Ⅲ)對(duì)于的任意一確定的位置,在直線(xiàn)x=上是否存在一點(diǎn)Q,使得,并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年湖北省襄陽(yáng)市襄樊四中高考適應(yīng)性考試數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知?jiǎng)訄AP過(guò)點(diǎn)N(2,0)并且與圓M:(x+2)2+y2=4相外切,動(dòng)圓圓心P的軌跡為W,過(guò)點(diǎn)N的直線(xiàn)l與軌跡W交于A、B兩點(diǎn).
(1)求軌跡W的方程;
(2)若2=,求直線(xiàn)l的方程;
(3)對(duì)于l的任意一確定的位置,在直線(xiàn)x=上是否存在一點(diǎn)Q,使得=0,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年河北省衡水市冀州中學(xué)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知?jiǎng)訄AP過(guò)點(diǎn)N(2,0)并且與圓M:(x+2)2+y2=4相外切,動(dòng)圓圓心P的軌跡為W,過(guò)點(diǎn)N的直線(xiàn)l與軌跡W交于A、B兩點(diǎn).
(1)求軌跡W的方程;
(2)若2=,求直線(xiàn)l的方程;
(3)對(duì)于l的任意一確定的位置,在直線(xiàn)x=上是否存在一點(diǎn)Q,使得=0,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)單元檢測(cè):圓錐曲線(xiàn)(2)(解析版) 題型:解答題

已知?jiǎng)訄AP過(guò)點(diǎn)N(2,0)并且與圓M:(x+2)2+y2=4相外切,動(dòng)圓圓心P的軌跡為W,過(guò)點(diǎn)N的直線(xiàn)l與軌跡W交于A、B兩點(diǎn).
(1)求軌跡W的方程;
(2)若2=,求直線(xiàn)l的方程;
(3)對(duì)于l的任意一確定的位置,在直線(xiàn)x=上是否存在一點(diǎn)Q,使得=0,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案