【題目】已知拋物線的方程為,其焦點為,為過焦點的拋物線的弦,過分別作拋物線的切線,設(shè)相交于點.
(1)求的值;
(2)如果圓的方程為,且點在圓內(nèi)部,設(shè)直線與相交于兩點,求的最小值.
【答案】(1)見解析;(2)
【解析】
設(shè),聯(lián)立直線方程與拋物線方程求得,求導(dǎo)算出斜率得,即,所以
結(jié)合,聯(lián)立在點、處的切線方程得交點,點在圓內(nèi),表示出和,列出的表達式,然后求解結(jié)果
(1)設(shè),因為,所以設(shè)AB的方程為,代入拋物線方程得,所以為方程的解,從而,
又因為 ,,因此,即,所以.
(2)由(1)知,聯(lián)立C1在點A,B處的切線方程分別為,,得到交點 . 由點P在圓內(nèi)得,又因為,,其中d為O到直線AB的距離.
所以. 又的方程為,所以,令,由得.又由,所以,從而.
所以,當(dāng)m=2時,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知變量、之間的線性回歸方程為,且變量、之間的一-組相關(guān)數(shù)據(jù)如下表所示,則下列說法錯誤的是( )
A.可以預(yù)測,當(dāng)時,B.
C.變量、之間呈負相關(guān)關(guān)系D.該回歸直線必過點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知梯形如圖(1)所示,其中, ,四邊形是邊長為的正方形,現(xiàn)沿進行折疊,使得平面平面,得到如圖(2)所示的幾何體.
(Ⅰ)求證:平面平面;
(Ⅱ)已知點在線段上,且平面,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)g(x)=ax2+c(a,c∈R),g(1)=1且不等式g(x)≤x2﹣x+1對一切實數(shù)x恒成立.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)在(Ⅰ)的條件下,設(shè)函數(shù)h(x)=2g(x)﹣2,關(guān)于x的不等式h(x﹣1)+4h(m)≤h()﹣4m2h(x),在x∈[,+∞)有解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市從2014年甲、乙兩種酸奶的日銷售量(單位:箱)的數(shù)據(jù)中分別隨機抽取100個,整理得到數(shù)據(jù)分組及頻率分布表和頻率分布直方圖:
(1)寫出頻率分布直方圖中的值,并做出甲種酸奶日銷售量的頻率分布直方圖;
(2)記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為。試比較和的大小
(3)假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中間值代替,試估計乙種酸奶在未來一個月(按30天計算)的銷售總量
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式ax2-(2a+1)x+2<0,其中a∈R.
(1)當(dāng)a=1時,求原不等式的解集;
(2)當(dāng)a≥0時,求原不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司對一個擁有20000人的企業(yè)推出一款意外險產(chǎn)品,每年每位職工只要交少量保費,發(fā)生意外后可一次性獲得若干賠償金,保險公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計出三類工種的賠付頻率如下表(并以此估計賠付概率):
已知三類工種職工每人每年保費分別為25元、25元、40元,出險后的賠償金額分別為100萬元、100萬元、50萬元,保險公司在開展此項業(yè)務(wù)過程中的固定支出為每年10萬元.
(1)求保險公司在該業(yè)務(wù)所或利潤的期望值;
(2)現(xiàn)有如下兩個方案供企業(yè)選擇:
方案1:企業(yè)不與保險公司合作,職工不交保險,出意外企業(yè)自行拿出與保險公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項工作的固定支出為每年12萬元;
方案2:企業(yè)與保險公司合作,企業(yè)負責(zé)職工保費的70%,職工個人負責(zé)保費的30%,出險后賠償金由保險公司賠付,企業(yè)無額外專項開支.
請根據(jù)企業(yè)成本差異給出選擇合適方案的建議.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知對任意的實數(shù),都有:,且當(dāng)時,有.
(1)求;
(2)求證:在上為增函數(shù);
(3)若,且關(guān)于的不等式對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com