【題目】已知過點(diǎn)的直線的參數(shù)方程是為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線交于兩點(diǎn),試問是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù)的值;若不存在,說明理由.

【答案】(1),;(2)

【解析】

1)消去參數(shù)即可得到直線的普通方程,利用極坐標(biāo)與直角坐標(biāo)的互化公式 ,即可得到曲線的直角坐標(biāo)方程;

(2)由題可得,利用圓的弦長公式即可求得實(shí)數(shù)的值

(1)消

直線的普通方程為

,

曲線的直角坐標(biāo)方程為

(2)由于,,故 ;

由于曲線的直角坐標(biāo)方程為,則圓心(3,0),,所以圓心到直線的距離 ,根據(jù)垂徑定理可得,即,

可求得

實(shí)數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知離心率為的橢圓Ca>b>0)的左焦點(diǎn)為,過作長軸的垂線交橢圓于兩點(diǎn),且.

I)求橢圓C的標(biāo)準(zhǔn)方程;

II)設(shè)O為原點(diǎn),若點(diǎn)A在直線上,點(diǎn)B在橢圓C上,且,求線段AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國已經(jīng)成為全球最大的電商市場,但是實(shí)體店仍然是消費(fèi)者接觸商品和品牌的重要渠道.某機(jī)構(gòu)隨機(jī)抽取了年齡介于10歲到60歲的消費(fèi)者200人,對他們的主要購物方式進(jìn)行問卷調(diào)查.現(xiàn)對調(diào)查對象的年齡分布及主要購物方式進(jìn)行統(tǒng)計(jì),得到如下圖表:

主要購物方式

年齡階段

網(wǎng)絡(luò)平臺購物

實(shí)體店購物

總計(jì)

40歲以下

75

40歲或40歲以上

55

總計(jì)

(1)根據(jù)已知條件完成上述列聯(lián)表,并據(jù)此資料,能否在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為消費(fèi)者主要的購物方式與年齡有關(guān)?

(2)用分層抽樣的方法從通過網(wǎng)絡(luò)平臺購物的消費(fèi)者中隨機(jī)抽取8人,然后再從這8名消費(fèi)者中抽取5名進(jìn)行答謝.設(shè)抽到的消費(fèi)者中40歲以下的人數(shù)為,求的分布列和數(shù)學(xué)期望.

參考公式:,其中.

臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列命題是否正確,正確的說明理由,錯(cuò)誤的舉例說明.

1)一條直線平行于一個(gè)平面,另一條直線與這個(gè)平面垂直,則這兩條直線互相垂直;

2)如果平面平面,平面平面,那么平面與平面所成的二面角和平面與平面所成的二面角相等或互補(bǔ);

3)如果平面平面,平面平面,那么平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列命題中pq的什么條件.(充分不必要條件必要不充分條件,充要條件,既不充分也不必要條件)

1p:數(shù)a能被6整除,q:數(shù)a能被3整除;

2,

3有兩個(gè)角相等,是正三角形;

4)若,,;

5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.

為了預(yù)測該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時(shí)間變量的兩個(gè)線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型①;根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型②

(1)分別利用這兩個(gè)模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值;

(2)你認(rèn)為用哪個(gè)模型得到的預(yù)測值更可靠?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù)

(1)求實(shí)數(shù)的值;

(2)如果對任意,不等式恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)一種機(jī)器的固定成本(即固定投入)為0.5萬元,但每生產(chǎn)100臺時(shí),又需可變成本(即另增加投入)0.25萬元.市場對此商品的年需求量為500臺,銷售的收入(單位:萬元)函數(shù)為,其中是產(chǎn)品生產(chǎn)的數(shù)量(單位:百臺).

(1)求利潤關(guān)于產(chǎn)量的函數(shù).

(2)年產(chǎn)量是多少時(shí),企業(yè)所得的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中,若存在唯一的整數(shù)使得,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案