已知函數(shù)。

(1)若不等式的解集為,求實(shí)數(shù)的值;

(2)在(1)的條件下,若存在實(shí)數(shù)n使成立,求實(shí)數(shù)m的取值范圍。

 

【答案】

(1);(2)

【解析】

試題分析:(1)由|2x-a|+a≤6得|2x-a|≤6-a,再利用絕對值不等式的解法去掉絕對值,結(jié)合條件得出a值;

(2)由(1)知f(x)=|2x-1|+1,令φ(n)=f(n)+f(-n),化簡φ(n)的解析式,若存在實(shí)數(shù)n使f(n)≤m-f(-n)成立,只須m大于等于φ(n)的最小值即可,從而求出實(shí)數(shù)m的取值范圍.解:(1)由|2x-a|+a≤6得|2x-a|≤6-a,

∴a-6≤2x-a≤6-a,即a-3≤x≤3,

∴a-3=-2,

∴a=1.(5分)

(2)由(1)知f(x)=|2x-1|+1,令φ(n)=f(n)+f(-n),

則φ(n)=|2n-1|+|2n+1|+2=

∴φ(n)的最小值為4,故實(shí)數(shù)m的取值范圍是[4,+∞).(10分)

考點(diǎn):絕對值不等式的解法

點(diǎn)評:本題考查絕對值不等式的解法,體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,利用分段函數(shù)化簡函數(shù)表達(dá)式是解題的關(guān)鍵

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù)

(1)若,試確定函數(shù)的單調(diào)區(qū)間;(2)若,且對于任意,恒成立,試確定實(shí)數(shù)的取值范圍;(3)設(shè)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆寧夏高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)已知函數(shù),

(1)若,求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省岳陽市高三第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù)

(1)若的極值點(diǎn),求實(shí)數(shù)的值;

(2)若上為增函數(shù),求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省華中師大一附中高三上學(xué)期期中檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)若,求函數(shù)的值;

(2)求函數(shù)的值域。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:吉林省10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

已知函數(shù)

(1)若從集合中任取一個(gè)元素,從集合中任取一個(gè)元素,求方程有兩個(gè)不相等實(shí)根的概率;

(2)若是從區(qū)間中任取的一個(gè)數(shù),是從區(qū)間中任取的一個(gè)數(shù),求方程沒有實(shí)根的概率.

 

查看答案和解析>>

同步練習(xí)冊答案