(本題滿分10分)
如圖,在三棱柱中,平面, ,點是的中點.
求證:(1);(2)平面.
證明:(1)先證明再證平面,推出.
(2)設(shè)與的交點為,連結(jié),推出是三角形的中位線進一步推出平面.
解析試題分析:證明:(1)平面,平面
,,,
平面,
平面
. -------------------5分
(2)設(shè)與的交點為,連結(jié), 為平行四邊形,所以為中點,又是的中點,所以是三角形的中位線,,又因為平面,平面,所以平面. ---------------------10分
考點:本題主要考查立體幾何中線面垂直、線面平行。
點評:典型題,立體幾何中線面關(guān)系與線線關(guān)系的相互轉(zhuǎn)化是高考重點考查內(nèi)容,證明過程中要特別重要表達的準(zhǔn)確性與完整性。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖,四棱錐的底面為菱形,平面,, E、F分別為的中點,.
(Ⅰ)求證:平面平面.
(Ⅱ)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是正方形,側(cè)面是正三角形,且平面⊥底面
(1)求證:⊥平面
(2)求直線與底面所成角的余弦值;
(3)設(shè),求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC,F(xiàn)是BC的中點,AB=AC=BE=2,CD=1
(Ⅰ)求證:DC∥平面ABE;
(Ⅱ)求證:AF⊥平面BCDE;
(Ⅲ)求證:平面AFD⊥平面AFE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
圖形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中點.AC,BD交于O點.
(1)二面角Q-BD-C的大小:
(2)求二面角B-QD-C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點.
(1)求證:VD∥平面EAC;
(2)求二面角A—VB—D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)如圖,四棱錐中,底面是邊長為4的正方形,是與的交點,平面,是側(cè)棱的中點,異面直線和所成角的大小是60.
(Ⅰ)求證:直線平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,棱長為a的正方體ABCD-A1B1C1D1中,E、F、G分別為A1D1、A1B1、BC的中點,
(1)求證:GC1//面AEF
(2)求:直線GC1到面AEF的距離。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com