如圖,圓與圓交于兩點(diǎn),以為切點(diǎn)作兩圓的切線分別交圓和圓兩點(diǎn),延長(zhǎng)交圓于點(diǎn),延長(zhǎng)交圓于點(diǎn).已知

(1)求的長(zhǎng);
(2)求

(1);(2).

解析試題分析:本題主要考查弦切角定理、三角形相似、切割線定理等基礎(chǔ)知識(shí),考查學(xué)生的邏輯推理能力、分析問(wèn)題解決問(wèn)題的能力.第一問(wèn),由于AC、AD分別是圓N、圓M的切線,所以利用弦切角定理,得到,所以相似三角形的判定,得△∽△,所以可得到邊的比例關(guān)系,從而求出邊長(zhǎng);第二問(wèn),根據(jù)切割線定理,得到2組關(guān)系式,2個(gè)式子相除得到一個(gè)等式,再結(jié)合第一問(wèn)的結(jié)論,解方程,得到的值.
試題解析:(1)根據(jù)弦切角定理,知,,
∴△∽△ ,則
. 5分
(2)根據(jù)切割線定理,知,,
兩式相除,得(*).
由△∽△,
,又,由(*)
.                                          10分
考點(diǎn):弦切角定理、三角形相似、切割線定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知以點(diǎn)P為圓心的圓經(jīng)過(guò)點(diǎn)A(-1,0)和B(3,4),線段AB的垂直平分線交圓P于點(diǎn)C和D,且|CD|=4.
(1)求直線CD的方程;
(2)求圓P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓:軸相切,點(diǎn)為圓心.
(1)求的值;
(2)求圓軸上截得的弦長(zhǎng);
(3)若點(diǎn)是直線上的動(dòng)點(diǎn),過(guò)點(diǎn)作直線與圓相切,為切點(diǎn).求四邊形面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系中,以O(shè)為圓心的圓與直線相切.
(1)求圓O的方程;
(2)圓O與軸相交于兩點(diǎn),圓內(nèi)的動(dòng)點(diǎn)滿足
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系中,以為圓心的圓與直線相切,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓滿足:①截軸所得弦長(zhǎng)為;②被軸分成兩段圓弧,其弧長(zhǎng)的比為;③圓心到直線的距離為的圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓滿足:①截y軸所得弦長(zhǎng)為2;②被x軸分成兩段圓弧,其弧長(zhǎng)的比為3∶1;③圓心到直線l:x-2y=0的距離為,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

AB是圓O的直徑,D為圓O上一點(diǎn),過(guò)D作圓O的切線交AB延長(zhǎng)線于點(diǎn)C,若DA=DC,求證:AB=2BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知直線與圓,則上各點(diǎn)到的距離的最小值為_(kāi)____________。

查看答案和解析>>

同步練習(xí)冊(cè)答案