若二次函數(shù)y=x2+bx+c的兩個零點分別是-1,2,則不等式f(x)<0的解集是
 
考點:一元二次不等式的解法,函數(shù)的零點
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由-1和2是函數(shù)y=x2+bx+c的零點,從而求出不等式f(x)<0的解集.
解答: 解:二次函數(shù)y=x2+bx+c的兩個零點分別是-1,2,
又二次函數(shù)開口向上,
f(x)<0的解集是(-1,2),
故答案為:(-1,2)
點評:本題考查了函數(shù)的零點與求一元二次不等式的解集的問題,解題時注意二次函數(shù)的開口方向,是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(1)已知圓C的圓心是x-y+1=0與x軸的交點,且與直線x+y+3=0相切,求圓C的標準方程;
(2)若點P(x,y)在圓(x-2)2+(y+1)2=36上,求u=x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果實數(shù)x,y滿足(x-2)2+(y-2)2=1,則x2+y2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正實數(shù)x,y滿足xy+2x+y=4,則x+y+1的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直角三角形的斜邊長為m,則其內(nèi)切圓半徑的最大值為(  )
A、
2
2
m
B、
2
-1
2
m
C、
2
m
D、(
2
-1)m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<α<
π
2
,-
π
2
<β<0,cos(α-β)=
3
5
,且tanα=
3
4
,求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=3x,若g(x)為函數(shù)f(x)的反函數(shù),則g(
3
)
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓x2+y2=4 上動點P及定點Q(4,0),則線段PQ中點M的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)0.027
1
3
-(-
1
7
)-2-3-1+(-
7
8
)0
;
(2)3log32+lg16+3lg5-lg
1
5

查看答案和解析>>

同步練習冊答案