已知橢圓=1及以下3個(gè)函數(shù):①f(x)=x;②f(x)=sin x;③f(x)=cos x.其中函數(shù)圖像能等分該橢圓面積的函數(shù)個(gè)數(shù)有(  )
A.1個(gè)B.2個(gè)
C.3個(gè)D.0個(gè)
B
要使函數(shù)y=f(x)的圖像能等分該橢圓的面積,則f(x)的圖像應(yīng)該關(guān)于橢圓的中心O對(duì)稱,即f(x)為奇函數(shù),①和②均滿足條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過橢圓的左頂點(diǎn)作斜率為2的直線,與橢圓的另一個(gè)交點(diǎn)為,與軸的交點(diǎn)為,已知.
(1)求橢圓的離心率;
(2)設(shè)動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn),若軸上存在一定點(diǎn),使得,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn),且離心率.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),橢圓的右頂點(diǎn)為,且滿足,試判斷直線是否過定點(diǎn),若過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的焦點(diǎn)與橢圓的焦點(diǎn)重合,且該橢圓的長(zhǎng)軸長(zhǎng)為,是橢圓上的的動(dòng)點(diǎn).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)滿足:,直線的斜率之積為,求證:存在定點(diǎn),
使得為定值,并求出的坐標(biāo);
(3)若在第一象限,且點(diǎn)關(guān)于原點(diǎn)對(duì)稱,點(diǎn)軸的射影為,連接 并延長(zhǎng)交橢圓于
點(diǎn),求證:以為直徑的圓經(jīng)過點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓=1的左焦點(diǎn)為F1,右頂點(diǎn)為A,上頂點(diǎn)為B.若∠F1BA=90°,則橢圓的離心率是(  )
A.  B.  C.  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知中心在原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),且左、右焦點(diǎn)分別為F1F2,兩條曲線在第一象限的交點(diǎn)記為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1,e2,則e1·e2的取值范圍是(  )
A.0,B.C.,+∞D.,+∞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓的離心率為,則雙曲線的漸近線方程是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系xOy中,F1,F2分別為橢圓=1(ab>0)的左、右焦點(diǎn),BC分別為橢圓的上、下頂點(diǎn),直線BF2與橢圓的另一個(gè)交點(diǎn)為D,若cos∠F1BF2,則直線CD的斜率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是橢圓上一動(dòng)點(diǎn),是橢圓的兩個(gè)焦點(diǎn),則的最大值為
A.3B.4C.5D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案