【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù)).

(1)證明:①當(dāng)時(shí),;

②當(dāng)時(shí),.

(2)是否存在最大的整數(shù),使得函數(shù)在其定義域上是增函數(shù)?若存在,求的值;若不存在,請(qǐng)說明理由.

【答案】(1)見解析;(2)見解析

【解析】

(1)①直接作差,構(gòu)建新函數(shù)研究最值即可;②同樣作差構(gòu)建函數(shù),研究最值即可;

(2)由題意可得,變量分離研究最值即可.

①令,

當(dāng)時(shí),,故在區(qū)間上為減函數(shù),

當(dāng)時(shí),,故在區(qū)間上為增函數(shù),

因此,故.

②令,

,因此為增函數(shù)

當(dāng)時(shí),故.

(2)據(jù)題意,函數(shù)的定義域?yàn)?/span>,又,

,

因此對(duì)一切.

,

,

為增函數(shù),

,,

因此在區(qū)間上有唯一的零點(diǎn),記它為,

上單調(diào)遞減,在上單調(diào)遞增,

,因此,其中

由(1)可知恒成立,且當(dāng)時(shí),成立

當(dāng)且僅當(dāng)時(shí)等號(hào)成立.

因此.

因此,即存在最大的整數(shù)28,使得在其定義域上是增函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車品牌為了了解客戶對(duì)于其旗下的五種型號(hào)汽車的滿意情況,隨機(jī)抽取了一些客戶進(jìn)行回訪,調(diào)查結(jié)果如下表:

汽車型號(hào)

I

II

III

IV

V

回訪客戶(人數(shù))

250

100

200

700

350

滿意率

0.5

0.3

0.6

0.3

0.2

滿意率是指:某種型號(hào)汽車的回訪客戶中,滿意人數(shù)與總?cè)藬?shù)的比值.

(Ⅰ) 從III型號(hào)汽車的回訪客戶中隨機(jī)選取1人,則這個(gè)客戶不滿意的概率為________;

(Ⅱ) 從所有的客戶中隨機(jī)選取1個(gè)人,估計(jì)這個(gè)客戶滿意的概率;

(Ⅲ) 汽車公司擬改變投資策略,這將導(dǎo)致不同型號(hào)汽車的滿意率發(fā)生變化.假設(shè)表格中只有兩種型號(hào)汽車的滿意率數(shù)據(jù)發(fā)生變化,那么哪種型號(hào)汽車的滿意率增加0.1,哪種型號(hào)汽車的滿意率減少0.1,使得獲得滿意的客戶人數(shù)與樣本中的客戶總?cè)藬?shù)的比值達(dá)到最大?(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天干地支,簡(jiǎn)稱為干支,源自中國遠(yuǎn)古時(shí)代對(duì)天象的觀測(cè).“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀(jì)年法是天干和地支依次按固定的順序相互配合組成,以此往復(fù),60年為一個(gè)輪回.現(xiàn)從農(nóng)歷2000年至2019年共20個(gè)年份中任取2個(gè)年份,則這2個(gè)年份的天干或地支相同的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)某種書籍每?jī)?cè)的成本費(fèi)(元)與印刷冊(cè)數(shù)(千冊(cè))的數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

4.83

4.22

0.3775

60.17

0.60

-39.38

4.8

其中.

為了預(yù)測(cè)印刷千冊(cè)時(shí)每?jī)?cè)的成本費(fèi),建立了兩個(gè)回歸模型.

(1)根據(jù)散點(diǎn)圖,你認(rèn)為選擇哪個(gè)模型預(yù)測(cè)更可靠?(只選出模型即可)

(2)根據(jù)所給數(shù)據(jù)和(1)中的模型選擇,求關(guān)于的回歸方程,并預(yù)測(cè)印刷千冊(cè)時(shí)每?jī)?cè)的成本費(fèi).

附:對(duì)于一組數(shù)據(jù),…,其回歸方程的斜率和截距的最小二乘估計(jì)公式分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,四邊形為菱形,,,平面平面.

(1)求證:;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】盒子里裝有4張卡片,上面分別寫著數(shù)字1,12,2,每張卡片被取到的概率相等.先從盒子中任取1張卡片,記下上面的數(shù)字,然后放回盒子內(nèi)攪勻,再從盒子中隨機(jī)任取1張卡片,記下它上面的數(shù)字.

1)求的概率

2)設(shè)“函數(shù)在區(qū)間內(nèi)有且只有一個(gè)零點(diǎn)”為事件,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面一道題目的證明,指出其中的一處錯(cuò)誤。題目:平面上有六個(gè)點(diǎn),任何三點(diǎn)都是三邊互不相等三角形的頂點(diǎn),則這些三角形中有一個(gè)的最短邊又是另一個(gè)三角形的最長(zhǎng)邊。證明:第一步,對(duì)已知的六個(gè)點(diǎn)作兩兩連線,可以得出15條邊,記為,,…,.第二步,由于任何三點(diǎn)組成的都是“三邊互不相等的三角形”,因此,15條邊互不相等不妨設(shè).第三步,由于“任何三點(diǎn)都是三邊互不相等三角形的頂點(diǎn)”,因此,任取三條邊都可以組成三角形,則、組成的三角形的最長(zhǎng)邊,也是、、組成的三角形的最短邊,命題得證.這三步中,第______步有錯(cuò)誤,理由是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,傾斜角為的直線經(jīng)過拋物線的焦點(diǎn),且與拋物線交于兩點(diǎn).

1)求拋物線的焦點(diǎn)的坐標(biāo)及準(zhǔn)線的方程;

2)若為銳角,作線段的垂直平分線軸于點(diǎn).證明為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平行六面體ABCD—A1B1C1D1中,AB=AC,平面BB1C1C⊥底面ABCD,點(diǎn)M、F分別是線段AA1、BC的中點(diǎn).

(1)求證:AF⊥DD1

(2)求證:AF∥平面MBC1

查看答案和解析>>

同步練習(xí)冊(cè)答案