設(shè)拋物線的準(zhǔn)線,焦點(diǎn)為,頂點(diǎn)為,為拋物線上任意一點(diǎn),,為垂足,求的交點(diǎn)的軌跡方程.

 

【答案】

交點(diǎn)M的軌跡方程.

【解析】本小題屬于相關(guān)點(diǎn)法求軌跡方程,可以引進(jìn)參數(shù)t,設(shè),然后分別求出直線的方程和直線的方程,再聯(lián)立解方程組可得到動(dòng)點(diǎn)M的參數(shù)方程,消去參數(shù)t就得到動(dòng)點(diǎn)M的軌跡方程.

解:設(shè)拋物線上點(diǎn),直線的方程為:.

,,  ∴直線的方程.它們的交點(diǎn),

由方程組        由①×②得:,

∴交點(diǎn)M的軌跡方程.

直接法也是可以做的,不同的設(shè)法也是可以解決的.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)與拋物線C2y2=4x的焦點(diǎn)F重合,點(diǎn)M是C1與C2在第一象限內(nèi)的交點(diǎn),且|MF|=
5
3

(1)求橢圓C1的方程;
(2)設(shè)拋物線的準(zhǔn)線與x軸交于點(diǎn)E,過E任作一條直線l,l與橢圓C1的兩個(gè)交點(diǎn)記為A,B.問:在橢圓的長(zhǎng)軸上是否存在一點(diǎn)P,使
PA
PB
為定值?若存在,求出點(diǎn)P的坐標(biāo)及相應(yīng)的定值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)三模理)如圖,設(shè)拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為;以為焦點(diǎn),離心率的橢圓與拋物線軸上方的一個(gè)交點(diǎn)為.

(Ⅰ)當(dāng)時(shí),求橢圓的方程及其右準(zhǔn)線的方程;

(Ⅱ)在(Ⅰ)的條件下,直線經(jīng)過橢圓的右焦點(diǎn),與拋物線交于,如果

以線段為直徑作圓,試判斷點(diǎn)P與圓的位置關(guān)系,并說明理由;

(Ⅲ)是否存在實(shí)數(shù),使得△的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為;以為焦點(diǎn),離心率的橢圓與拋物線軸上方的交點(diǎn)為,延長(zhǎng)交拋物線于點(diǎn),是拋物線上一動(dòng)點(diǎn),且M之間運(yùn)動(dòng).

(1)當(dāng)時(shí),求橢圓的方程;

(2)當(dāng)的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期初摸底文科數(shù)學(xué) 題型:解答題

(本題滿分15分)如圖,設(shè)拋物線的準(zhǔn)線與x軸交于點(diǎn),

焦點(diǎn)為為焦點(diǎn),離心率為的橢圓與拋物線在x軸上方的交點(diǎn)為P

,延長(zhǎng)交拋物線于點(diǎn)Q,M是拋物線上一動(dòng)點(diǎn),且M在P與Q之間運(yùn)動(dòng)。

1) 當(dāng)m=3時(shí),求橢圓的標(biāo)準(zhǔn)方程;

2) 若且P點(diǎn)橫坐標(biāo)為,求面積的最大值

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案